Exploring the contribution of charged species at the outer surface to the ion current signal of nanopores: a theoretical study†
Abstract
Nanopores attached to charged species realize the artificial regulation of ion transport by the electrostatic effect in nanoconfines, produce a sensitive ion current signal and play a critical role in nanopore-based analyses. However, until now, the contribution of the charged species at the outer surface, an inherent component of nanopores, to the ion current signal has not yet been fully investigated. Here, we theoretically investigate the contribution of the charged species at the outer surface to the ion current signal of a conical nanopore. The results indicate that when the electrostatic effect at the tip of the conical nanopore is strengthened, the contribution from the charged species at the outer surface to the ionic current signal becomes stronger or even predominant compared with that of the inner walls. This effect can be further enhanced using nanopore arrays with small openings and low pore density in a low concentration electrolyte. This work focuses on the working mechanism of nanopores with a high-efficient signal conversion and promotes the performance of nanopores with a regional distribution of charged probes and targets.
- This article is part of the themed collection: Analyst HOT Articles 2021