Porous substrates as platforms for the nanostructuring of molecular magnets
Abstract
Single molecule magnets (SMMs) and single ion magnets (SIMs), also known as molecular magnets (MMs), exhibit magnetic bistability and slow relaxation of their magnetization, characteristics which are representative of nanodomain particles whose origin is attributed to individual molecular spins. MMs have been receiving significant attention due to their potential applications in (1) ultra-high-density information storage devices, where each molecule can be used as a magnetic bit of information, and (2) quantum computing applications, taking advantage of lengthy coherence intervals. Any practical applications of MMs however, requires their controlled organization in different dimensionality architectures to allow for read-and-write processes, which is a challenge given that their chemical integrity and unique magnetic properties must be preserved during the nanostructuration process. This feature article highlights recent advances in this newly emerging field on the nanostructuration of MMs, and provides a comprehensive review of MM composites derived from various porous substrates, with particular emphases on synthetic approaches and characterization strategies.
- This article is part of the themed collection: 2018 Highlight article collection