Ultrafast laser control of electron dynamics in atoms, molecules and solids
Abstract
Exploiting coherence properties of laser light together with quantum mechanical matter interferences in order to steer a chemical reaction into a pre-defined target channel is the basis of coherent control. The increasing availability of laser sources operating on the time scale of molecular dynamics, i.e. the femtosecond regime, and the increasing capabilities of shaping light in terms of amplitude, phase and polarization also on the time scale of molecular dynamics brought the temporal aspect of this field to the fore. Since the last Faraday Discussion (Faraday Discussion 113, Stereochemistry and control in molecular reaction dynamics) devoted to this topic more than a decade ago a tremendous cross-fertilization to neighbouring “quantum technology disciplines” in terms of experimental techniques and theoretical developments has occurred. Examples are
- This article is part of the themed collections: Coherence and Control in Chemistry and The Spiers Memorial Lectures