Synthesis of symmetrical and unsymmetrical bis(pyrrolo[2,3-d]pyrimidinyl)methanes

Meenakshi Sharma and Pulak J. Bhuyan*
Medicinal Chemistry Division, CSIR-North East Institute of Science & Technology, Jorhat 785006, Assam, India. E-mail: pulak_jyoti@yahoo.com; Fax: +91-376-2370011; Tel: +91-376-2370121

Received 3rd September 2014 , Accepted 31st October 2014

First published on 3rd November 2014


Abstract

Some novel symmetrical bis(pyrrolo[2,3-d]pyrimidinyl)methanes were synthesized via diheteroarylation of sp3 CH bond of acetophenones with molecular iodine and DMSO. Further, an efficient reaction protocol was developed with which both symmetrical and some novel unsymmetrical bis(pyrrolo[2,3-d]pyrimidinyl)methanes were synthesized. For this purpose, we have exploited the highly reactive and good leaving nature of 1,3-dimethylbarbituric acid.


Introduction

The importance of pyrrolo[2,3-d]pyrimidines is well recognized by biological, medicinal and synthetic organic chemists. Compounds with this molecular motif possess diverse biological activities such as anti-microbial,1 analgesic,2 anti-inflammatory,3 anti-viral,4 anti-cancer,5 antioxidant and neuroprotective activity.6 Some of their representatives are protein kinase inhibitors,7 E1 enzyme inhibitors,8 insulin-like growth factor 1 receptor inhibitors,9 STAT6 inhibitors10 and 2 microtubule targeting agents.11 Pyrrolo[2,3-d]pyrimidine constitutes the basic molecular unit of various nucleosides12 such as toyocamycine, tubercidin and sangivamycin which exhibit antiviral, antimicrobial, antiparasitic and antineoplastic activity. Some other compounds of this class have significant activity against a variety of RNA, DNA viruses, HSV-1, HSV-2 and HCMV.13

Insertion of an aryl group to a sp3 carbon atom next to a carbonyl group, which frequently involves in the synthesis of many useful compounds including medicines, natural products of biological significance and industrial materials,14 is a long-standing problem in synthetic organic chemistry.15 Most common and widely used methods for α-arylation of sp3 C–H bond of ketones include the coupling of C sp3–H bond with aryl halide/aryl metal and cross-dehydrogenative coupling.16 Very recently, Myrboh and his co-workers reported the sp3 C–H bond diarylation by selenium dioxide in presence of BF3·Et2O.17

As a part of our continued interest in the synthesis of diverse heterocyclic compounds,18 particularly annelated pyrimidines of biological importance,19 in a recent communication, we reported for the first time the synthesis of bis(pyrrolo[2,3-d]pyrimidinyl)methanes, a novel class of compounds, from the reaction of pyrrolo[2,3-d]pyrimidines and aldehydes/ketones via a mild process of carbon–carbon bond formation using iodine as catalyst in aqueous medium.20 In the present paper, we report the full account of our advanced study of the reaction process and synthesis of some novel bis(pyrrolo[2,3-d]pyrimidinyl)methane derivatives 3 from the reaction of pyrrolo[2,3-d]pyrimidine-2,4-diones 1 and acetophenones 2 via diheteroarylation of sp3 CH bond in the presence of molecular iodine and DMSO (Scheme 1), and also an efficient method for the synthesis of both symmetrical and novel unsymmetrical-bis(pyrrolo[2,3-d]pyrimidinyl)methanes (Scheme 3).


image file: c4ra09729g-s1.tif
Scheme 1 Synthesis of bis(pyrrolo[2,3-d]pyrimidinyl)methanes 3.

Results and discussion

We initiated our study with an objective to synthesize some new bis(pyrrolo[2,3-d]pyrimidinyl)methane derivatives via dihetero-arylation of sp3 CH bond of acetophenones with pyrrolo[2,3-d]pyrimidine-2,4-diones using SeO2 + BF3·Et2O system in dry toluene.17 In the reaction strategy, we treated 1,3-dimethyl-pyrrolo[2,3-d]pyrimidine-2,4-dione 1a and acetophenone 2a in the presence of SeO2 + BF3·Et2O system in dry toluene, initially at room temperature and then in refluxing conditions. But no satisfactory results were obtained. It was observed that the solubility of 1,3-dimethylpyrrolo[2,3-d]pyrimidine-2,4-dione 1a is very poor in toluene, and at elevated temperature some breakdown products were formed instead of the desired compound. Then, we replaced (SeO2 + BF3·Et2O) system with (DMSO + I2)21 system which is considerably mild and easy to handle, and DMSO also acts as solvent. So, first we conducted the reaction using 1,3-dimethylpyrrolo[2,3-d]pyrimidine-2,4-dione 1a and acetophenone 2a in the presence of DMSO + I2 at room temperature using DMSO as solvent. But the reaction did not occur. Then the reaction was studied under refluxing condition. The reaction occurred to give the desired product, but a number of breakdown products were formed. However, the formation of the desired product was improved when the reaction was carried out at 90 °C. But very interestingly, when we first carried out the reaction using acetophenone 2a with DMSO + I2 at 90 °C, and resulting solution was treated with 1,3-dimethylpyrrolo[2,3-d]pyrimidine-2,4-dione 1a at room temperature under stirring condition, afforded the desired product bis(pyrrolo[2,3-d]pyrimidinyl)methanes 3a in almost pure form and in high yield. The structure of the compound was ascertained as 3a from the spectroscopic data and elemental analysis. The 1H NMR spectra (DMSO-d6) of the compound showed the presence of an isolated proton at δ 6.36 as singlet, and two symmetric protons of the two pyrrolo[2,3-d]pyrimidine-2,4-dione molecular units at δ 6.03 as singlet. A clean peak of the two symmetric >NH protons were observed at δ 11.77 as a singlet. The mass spectra showed a sharp molecular ion peak at 475.6 ([M + H]+). The generality of the reaction was established by synthesizing compounds 3a–p and characterizing them (Table 1). It was observed that acetophenones 2 with both electron donating and electron withdrawing groups at the aromatic ring are equally reactive and gave good yield of the products. However, 1,3-dimethylpyrrolo[2,3-d]pyrimidine-2,4-dione 1a was more reactive (entry 1–8, Table 1) than 3-methylpyrrolo[2,3-d]pyrimidine-2,4-dione 1b (entry 9–16, Table 1) and gave better yield of the products.
Table 1 Synthesis of bis(pyrrolo[2,3-d]pyrimidinyl)methanes 3a
En. R1

image file: c4ra09729g-u1.tif

Pd. R.T. (h) Yield (%)
a En. = entry; Pd. = product; R.T. = reaction time.
1 CH3 C6H5 3a 3 82
2 CH3 4-CH3C6H4 3b 3 80
3 CH3 4-CH3OC6H4 3c 3 80
4 CH3 4-ClC6H4 3d 3 82
5 CH3 4-BrC6H4 3e 3 81
6 CH3 4-NO2C6H4 3f 3 81
7 CH3 2-Thiophenyl 3g 3 79
8 CH3 2-Naphthyl 3h 3 82
9 H C6H5 3i 4 78
10 H 4-CH3C6H4 3j 4 77
11 H 4-CH3OC6H4 3k 4 77
12 H 4-ClC6H4 3l 4 78
13 H 4-BrC6H4 3m 4 78
14 H 4-NO2C6H4 3n 4 78
15 H 2-Thiophenyl 3o 4 75
16 H 2-Naphthyl 3p 4 78


The probable mechanism of the reaction is outlined in the Scheme 2. The reaction occurred via initial iodination of the acetophenone 2a by iodine to give the compound [A] which was subsequently oxidized by DMSO to the intermediate aldehyde [B].21 The rest of the reaction follow the mechanism as reported in the previous paper.20 The aldehyde [B] suffered a nucleophilic attack by the pyrrolo[2,3-d]pyrimidines 1a in presence of iodine to give the intermediate [C] by the elimination of water molecule. The intermediate [C] then suffered a nucleophilic attack by the second 1,3-dimethylpyrrolo[2,3-d]pyrimidine-2,4-dione 1a molecule to give the final product 3a. The mechanism was further established by performing the reaction of commercially available phenyl glyoxal [B] with 1,3-dimethylpyrrolo[2,3-d]pyrimidine-2,4-dione 1a in the presence of iodine as catalyst using DMSO as solvent which afforded the expected compound 3a in good yield.


image file: c4ra09729g-s2.tif
Scheme 2 Plausible mechanism for the formation of 3a.

It was observed in our previous20 and the present study that the intermediate [C] (in the present case) is not isolable which suffers a quick nucleophilic attack by the second molecule of pyrrolo[2,3-d]pyrimidine-2,4-dione giving symmetrical bis(pyrrolo[2,3-d]pyrimidinyl)methanes in all the cases. Therefore, we have efficiently developed the reaction process which was applicable for the synthesis of both symmetrical and unsymmetrical bis(pyrrolo[2,3-d]pyrimidinyl)methanes that contain two similar or dissimilar pyrrolo[2,3-d]pyrimidine-2,4-dione molecules respectively (Scheme 3). For this purpose, we have exploited the highly reactive and good leaving nature of 1,3-dimethylbarbituric acid which we demonstrated in our earlier works.19d,22 In the reaction protocol, 1,3-dimethylbarbituric acid 4 was first reacted with aldehydes 5 following our reported method23 to afford the Knoevenagel condensed products 6 which on stirring with pyrrolo[2,3-d]pyrimidine derivatives 1 at room temperature afforded the compounds 7 (Scheme 3). The compound 7, on treatment with various pyrrolo[2,3-d]pyrimidine-2,4-diones 8 in presence of iodine as catalyst under refluxing conditions in acetonitrile afforded bis(pyrrolo[2,3-d]pyrimidinyl)methanes 9 in very high yields (Table 2). 1,3-Dimethylbarbituric acid 4 was eliminated in the reaction process which was isolated and recycled in the reaction process. The use of compounds 8, identical with compounds 1 (Scheme 1) produced symmetrical bis(pyrrolo[2,3-d]pyrimidinyl)methanes (entry 1 and 2, Table 2). The structure of the compounds were ascertained from the spectroscopic data, elemental analysis and by comparing with the authentic samples we prepared earlier.20 On the other hand, utilization of compounds 8, dissimilar from compounds 1 produced unsymmetrical bis(pyrrolo[2,3-d]pyrimidinyl)methanes (entry 3–17). The structure of the novel unsymmetrical bis(pyrrolo[2,3-d]pyrimidinyl)methanes (entry 3–17, Table 2) were confirmed from their spectroscopic data and elemental analysis.


image file: c4ra09729g-s3.tif
Scheme 3 Synthesis of bis(pyrrolo[2,3-d]pyrimidinyl)methanes 9.
Table 2 Synthesis of bis(pyrrolo[2,3-d]pyrimidinyl)methanes 9a
En. R1 R3 R4 R5 Pd. R.T. (h) Yd. (%)
a En = entry; Pd. = product; R.T. = reaction time; Yd = yield.
1 CH3 Ph H CH3 9a 2 95
2 H Ph H H 9b 2 92
3 CH3 Ph H H 9c 2 84
4 CH3 4-OCH3C6H4 H H 9d 2 82
5 CH3 4-NO2C6H4 H H 9e 2 80
6 CH3 Ph CH3 CH3 9f 2 90
7 CH3 4-OCH3C6H4 CH3 CH3 9g 2 89
8 CH3 4-NO2C6H4 CH3 CH3 9h 2 87
9 H Ph CH3 CH3 9i 2 70
10 H 4-OCH3C6H4 CH3 CH3 9j 2 69
11 H 4-NO2C6H4 CH3 CH3 9k 2 68
12 CH3 Thiophenyl H H 9l 2 83
13 CH3 (CH3)2CH H H 9m 2 82
14 CH3 Thiophenyl CH3 CH3 9n 2 85
15 CH3 (CH3)2CH CH3 CH3 9o 2 84
16 H Thiophenyl CH3 CH3 9p 2 70
17 H (CH3)2CH CH3 CH3 9q 2 68


As in the earlier case, both electron donating and electron withdrawing groups at the aromatic ring of aldehydes 5 are equally reactive and gave good yield of the products. Again, N-methylated pyrrolo[2,3-d]pyrimidine-2,4-diones were more reactive than the partially unsubstituted pyrrolo[2,3-d]pyrimidine-2,4-diones. However, although the condensation of glyoxal [B] and 1,3-dimethylbarbituric acid 4 took place very easily,24 the Michael addition of pyrrolo[2,3-d]pyrimidine-2,4-diones 1 to the condensed product did not occur under our reaction conditions (Scheme 4). It might be because of the keto group which deactivates the nucleophilic addition.


image file: c4ra09729g-s4.tif
Scheme 4

The mechanism for the formation of the 9 is outlined in the Scheme 5. Michael addition of compound 1 to the Knoevenagel condensed product 6 produced the compound 7. Then, the intermediate [X], formed in situ from compound 7 under thermal condition via elimination of compound 4, suffered nucleophilic attack by the compound 8 in presence of iodine to give the product 9. The mechanism was supported by the isolation and characterization of the eliminated 1,3-dimethylbarbituric acid 4 from the reaction mixture. Notably, such good leaving nature of the compound 4 is well documented.19d,22


image file: c4ra09729g-s5.tif
Scheme 5 Mechanism for the formation of bis(pyrrolo[2,3-d]pyrimidinyl)methanes 9.

Conclusions

In conclusion, we have reported the synthesis of some novel bis(pyrrolo[2,3-d]pyrimidinyl)methanes 3, via diheteroarylation of sp3 CH bond of acetophenones in the presence of molecular iodine and DMSO. The reactants were consumed completely in the reaction process and single product was isolated in each case. The very small amount of impurity observed in the TLC study, was removed by column chromatography. Thus, products were obtained in very high yield. Furthermore, we have developed the reaction protocol in an efficient way which produced both symmetrical and unsymmetrical bis(pyrrolo[2,3-d]pyrimidinyl)methanes as per requirements. The products were obtained in solid form after simple work up procedure and were purified by crystallization.

Experimental

General considerations

Melting points were measured with a Buchi-540 melting point apparatus. IR spectra were recorded on a SHIMADZU FTIR-8400. 1H NMR and 13C NMR Spectra were recorded on Bruker Avance-DPX 300 MHz and 75 MHz FT NMR in DMSO-d6 using TMS as an internal standard. Chemical shifts (δ units) are given from TMS (0 ppm) and coupling constants are expressed in Hertz (Hz). Chemical shifts for DMSO-d6 were reported at around 3.36 and 2.50 ppm respectively (δ units). Mass spectra were recorded on ESQUIRE 3000 Mass spectrometer. All experiments were monitored by Thin Layer Chromatography (TLC). TLC was performed on pre-coated silica gel plates (Merck).

General procedure for the synthesis of bis(pyrrolo[2,3-d]pyrimidinyl)methanes 3

In a typical experimental procedure, acetophenone 2a (0.120 g, 1 mmol), I2 (0.3795 g, 1.5 mmol) and DMSO (5 mL) were first treated at 90 °C for 2 h. The resulting mixture was then cooled to room temperature and reacted with 1,3-dimethylpyrrolo[2,3-d]pyrimidine-2,4-dione 1a (0.362 g, 2 mmol) at room temperature for 1 h. After completion (monitored by TLC) of the reaction, 5% aqueous sodium thiosulphate solution (5 mL) was added to the reaction mixture and extracted with ethyl acetate (5 mL × 3 mL). The combined solvent was evaporated under reduced pressure and the product was purified by column chromatography on silica gel using 2[thin space (1/6-em)]:[thin space (1/6-em)]8 ratio of hexane[thin space (1/6-em)]:[thin space (1/6-em)]ethylacetate as eluent. The structure of the compound was ascertained as bis(pyrrolo[2,3-d]pyrimidinyl)methane derivative 3a from the spectroscopic data and elemental analysis. Similarly compounds 3b–p were synthesized and characterized.
3a. Purple solid. Yield: 388 mg (82%); mp. 279–280 °C; 1H NMR (DMSO-d6, 300 MHz) δ (ppm) 3.18 (s, 6H), 3.42 (s, 6H), 6.03 (s, 2H), 6.14 (s, 1H), 7.26–8.04 (m, 5H), 11.77 (s, 2H, NH); 13C NMR (DMSO-d6, 75 MHz) δ (ppm) 28.0 (2C), 31.0 (2C), 45.8, 98.7 (2C), 104.1 (2C), 126.9 (2C), 129.0 (2C), 129.3 (2C), 133.9, 135.9, 139.7 (2C), 151.1 (2C), 158.6 (2C), 194.4; IR (KBr) νmax 3570.2, 3204.8, 1694.9, 1558.9 cm−1; MS (ESI) 475.6 ([M + H]+); anal. cald for C24H22N6O5 C, 60.75; H, 4.67; N, 17.71% found: C, 60.80; H, 4.71; N, 17.75%.
3b. Purple solid. Yield: 394 mg (80%); mp. 276–280 °C; 1H NMR (DMSO-d6, 300 MHz) δ (ppm) 2.35 (s, 3H), 3.18 (s, 6H), 3.42 (s, 6H), 6.03 (s, 2H), 6.13 (s, 1H), 7.32 (d, J = 7.92 Hz, 2H), 7.91 (d, J = 7.98 Hz, 2H), 11.75 (s, 2H, NH); 13C NMR (DMSO-d6, 75 MHz) δ (ppm) 21.5, 28.0 (2C), 31.0 (2C), 45.7, 98.7 (2C), 104.1 (2C), 127.0 (2C), 129.1 (2C), 129.8 (2C), 133.4, 139.7 (2C), 144.4, 151.1 (2C), 158.6 (2C), 194.0; IR (KBr) νmax 3374.5, 3277.5, 1686.2, 1555.6 cm−1; MS (ESI) 489.3 ([M + H]+); anal. cald for C25H24N6O5 C, 61.47; H, 4.95; N, 17.20% found: C, 61.49; H, 4.97; N, 17.26%.
3c. Pink solid. Yield: 403 mg (80%); mp. 275–277 °C; 1H NMR (DMSO-d6, 300 MHz) δ (ppm) 3.18 (s, 6H), 3.42 (s, 6H), 3.66 (s, 3H), 6.02 (s, 2H), 6.15 (s, 1H), 7.31 (d, J = 10.38 Hz, 2H), 7.90 (d, J = 10.95 Hz, 2H), 11.76 (s, 2H, NH); 13C NMR (DMSO-d6, 75 MHz) δ (ppm) 28.0 (2C), 31.0 (2C), 42.3, 56.0, 98.4 (2C), 102.9 (2C), 114.2 (2C), 128.5, 129.7 (2C), 132.5 (2C), 132.9, 139.6 (2C), 151.1 (2C), 158.7 (2C), 194.0; IR (KBr) νmax 3375.5, 3278.5, 1687.2, 1554.6 cm−1; MS (ESI) 505.3 ([M + H]+); anal. cald for C25H24N6O6 C, 59.52; H, 4.80; N, 16.66% found: C, 59.57; H, 4.87; N, 16.69%.
3d. Pink solid. Yield: 416 mg (82%); mp. 274–279 °C; 1H NMR (DMSO-d6, 300 MHz) δ (ppm) 3.18 (s, 6H), 3.42 (s, 6H), 6.04 (s, 2H), 6.14 (s, 1H), 7.61 (d, J = 8.46 Hz, 2H), 8.01 (d, J = 8.49 Hz, 2H), 11.74 (s, 2H, NH); 13C NMR (DMSO-d6, 75 MHz) δ (ppm) 28.0 (2C), 31.0 (2C), 45.7, 98.7 (2C), 104.3 (2C), 126.5 (2C), 129.5, 130.8 (2C), 134.6, 138.8 (2C), 139.8 (2C), 151.1 (2C), 158.6 (2C), 194.0; IR (KBr) νmax 3378.9, 3275.2, 1687.2, 1558.2 cm−1; MS (ESI) 509.1 ([M + H]+); anal. cald for C24H21ClN6O5 C, 56.64; H, 4.16; N, 16.51% found: C, 56.70; H, 4.19; N, 16.55%.
3e. Pink solid. Yield: 447 mg (81%); mp. 275–279 °C; 1H NMR (DMSO-d6, 300 MHz) δ (ppm) 3.18 (s, 6H), 3.43 (s, 6H), 6.02 (s, 2H), 6.22 (s, 1H), 7.73 (d, J = 8.49 Hz, 2H), 7.96 (d, J = 8.43 Hz, 2H), 11.97 (s, 2H); 13C NMR (DMSO-d6, 75 MHz) δ (ppm) 28.0 (2C), 31.1 (2C), 46.7, 98.7 (2C), 104.3 (2C), 126.5 (2C), 129.5, 130.8 (2C), 134.6, 138.8 (2C), 139.8 (2C), 151.1 (2C), 158.6 (2C), 194.0; IR (KBr) νmax 3388.7, 3279.2, 1689.1, 1555.4 cm−1; MS (ESI) 554.3 ([M + H]+); anal. cald for C24H21BrN6O5 C, 52.09; H, 3.83; N, 15.19% found: C, 52.16; H, 3.89; N, 15.25%.
3f. Pinkish orange solid. Yield: 420 mg (81%); mp. 273–277 °C; 1H NMR (DMSO-d6, 300 MHz) δ (ppm) 3.18 (s, 6H), 3.43 (s, 6H), 6.07 (s, 2H), 6.22 (s, 1H), 8.09–8.37 (m, 4H), 11.77 (s, 2H); 13C NMR (DMSO-d6, 75 MHz) δ (ppm) 28.0 (2C), 31.0 (2C), 46.5, 98.8 (2C), 104.5 (2C), 124.5 (2C), 126.0 (2C), 129.0 (2C), 130.3, 133.3, 139.9 (2C), 151.1 (2C), 158.6 (2C), 194.1; IR (KBr) νmax 3387.2, 3281.2, 1679.1, 1565.4 cm−1; MS (ESI) 520.2 ([M + H]+); anal. cald for C24H21N7O7 C, 55.49; H, 4.07; N, 18.87% found: C, 55.56; H, 4.19; N, 18.95%.
3g. Pink solid. Yield: 379 mg (79%); mp. 275–279 °C; 1H NMR (DMSO-d6, 300 MHz) δ (ppm) 3.19 (s, 6H), 3.41 (s, 6H), 6.08 (s, 2H), 6.20 (s, 1H), 6.90–7.48 (m, 3H), 11.80 (s, 2H, NH); 13C NMR (DMSO-d6, 75 MHz) δ (ppm) 28.0 (2C), 31.0 (2C), 38.3, 98.3 (2C), 102.6 (2C), 125.6, 126.2, 127.2, 131.7 (2C), 139.4 (2C), 144.7, 151.0 (2C), 158.6 (2C), 194.0; IR (KBr) νmax 3378.9, 3277.1, 1677.5, 1556.2 cm−1; MS (ESI) 481.6 ([M + H]+); anal. cald for C22H20N6O5S C, 54.99; H, 4.20; N, 17.49% found: C, 55.06; H, 4.25; N, 17.58%.
3h. Pink solid. Yield: 430 mg (82%); mp. 277–280 °C; 1H NMR (DMSO-d6, 300 MHz) δ (ppm) 3.18 (s, 6H), 3.44 (s, 6H), 6.10 (s, 2H), 6.35 (s, 1H), 7.61–8.74 (m, 7H), 11.80 (s, 2H); 13C NMR (DMSO-d6, 75 MHz) δ (ppm) 28.0 (2C), 31.0 (2C), 45.9, 98.8 (2C), 104.2 (2C), 124.6, 126.9 (2C), 127.6, 128.1, 128.9, 129.3, 130.0, 130.6, 132.5, 133.2, 135.4, 139.8 (2C), 151.1 (2C), 158.6 (2C), 194.5; IR (KBr) νmax 3386.4, 3284.9, 1669.5, 1562.1 cm−1; MS (ESI) 525.3 ([M + H]+); anal. cald for C28H24N6O5 C, 64.11; H, 4.61; N, 16.02% found: C, 64.21; H, 4.69; N, 16.15%.
3i. Brown solid. Yield: 348 mg (78%); mp. > 300 °C; 1H NMR (DMSO-d6, 300 MHz) δ (ppm) 3.18 (s, 6H), 6.03 (s, 2H), 6.17 (s, 1H), 7.40–7.68 (m, 5H), 10.73 (s, 2H, NH), 11.58 (s, 2H, NH); 13C NMR (DMSO-d6, 75 MHz) δ (ppm) 28.0 (2C), 45.8, 98.7 (2C), 104.1 (2C), 126.9 (2C), 129.0 (2C), 129.3 (2C), 133.9, 135.93, 139.7 (2C), 151.1 (2C), 158.6 (2C), 194.4; IR (KBr) νmax; 3370.1, 3278.5, 1656.3, 1617.1 cm−1; MS (ESI) 447.4 ([M + H]+); anal. cald for C22H18N6O5 C, 59.19; H, 4.06; N, 18.83% found: C, 59.26; H, 4.14; N, 18.89%.
3j. Brown solid. Yield: 354 mg (77%); mp. > 300 °C; 1H NMR (DMSO-d6, 300 MHz) δ (ppm) 2.31 (s, 3H), 3.19 (s, 6H), 6.04 (s, 2H), 6.22 (s, 1H), 7.10–7.21 (m, 4H), 10.75 (s, 2H, NH), 11.71 (s, 2H, NH); 13C NMR (DMSO-d6, 75 MHz) δ (ppm) 21.5, 28.0 (2C), 45.7, 98.7 (2C), 104.1 (2C), 127.0 (2C), 129.1 (2C), 129.8 (2C), 133.4, 139.7 (2C), 144.4, 151.1 (2C), 158.6 (2C), 194.0 IR (KBr) νmax 3372.1, 3267.9, 1680.2, 1557.6 cm−1; MS (ESI) 461.4 ([M + H]+); anal. cald for C23H20N6O5 C, 60.02; H, 4.38; N, 18.25% found: C, 60.09; H, 4.47; N, 18.34%.
3k. Brown solid. Yield: 366 (77%); mp. > 300 °C; 1H NMR (DMSO-d6, 300 MHz) δ (ppm) 3.17 (s, 6H), 3.67 (s, 3H), 6.01 (s, 2H), 6.12 (s, 1H), 6.71–7.26 (m, 4H), 10.71 (s, 2H, NH), 11.55 (s, 2H, NH); 13C NMR (DMSO-d6, 75 MHz) δ (ppm) 28.0 (2C), 42.4, 55.5, 98.4 (2C), 102.9 (2C), 114.2 (2C), 128.5, 129.7 (2C), 132.5 (2C), 132.9, 139.6 (2C), 151.1 (2C), 158.7 (2C), 194.0; IR (KBr) νmax 3386.2, 3275.4, 1665.5, 1626.6 cm−1; MS (ESI) 477.5 ([M + H]+); anal. cald for C23H20N6O6 C, 57.98; H, 4.23; N, 17.64% found: C, 58.02; H, 4.31; N, 17.70%.
3l. Brown solid. Yield: 374 mg (78%); mp. > 300 °C; 1H NMR (DMSO-d6, 300 MHz) δ (ppm) 3.25 (s, 6H), 6.06 (s, 2H), 6.19 (s, 1H), 7.10–7.70 (m, 4H), 10.77 (s, 2H, NH), 11.58 (s, 2H, NH); 13C NMR (DMSO-d6, 75 MHz) δ (ppm) 28.0 (2C), 45.7, 98.7 (2C), 104.3 (2C), 126.5 (2C), 129.5, 130.8 (2C), 134.6, 138.8 (2C), 139.8 (2C), 151.1 (2C), 158.6 (2C), 194.0; IR (KBr) νmax 3383.5, 3275.4, 1658.1, 1615.5 cm−1; MS (ESI) 481.3 ([M + H]+); anal. cald for C22H17ClN6O5 C, 54.95; H, 3.56; N, 17.48% found: C, 55.15; H, 3.61; N, 17.51%.
3m. Brown solid. Yield: 408 (78%); mp. > 300 °C; 1H NMR (DMSO-d6, 300 MHz) δ (ppm) 3.32 (s, 6H), 6.07 (s, 2H), 6.25 (s, 1H), 7.21–7.43 (m, 4H), 10.75 (s, 2H, NH), 11.58 (s, 2H, NH); 13C NMR (DMSO-d6, 75 MHz) δ (ppm) 28.0 (2C), 46.7, 98.7 (2C), 104.3 (2C), 126.5 (2C), 129.5, 130.8 (2C), 134.6, 138.8 (2C), 139.8 (2C), 151.1 (2C), 158.6 (2C), 194.0; IR (KBr) νmax 3398.2, 3271.2, 1657.2, 1613.5 cm−1; MS (ESI) 525.4 ([M + H]+); anal. cald for C22H17BrN6O5 C, 50.30; H, 3.26; N, 15.21% found: C, 50.42; H, 3.32; N, 15.29%.
3n. Brown solid. Yield: 382 mg (78%); mp. > 300 °C; 1H NMR (DMSO-d6, 300 MHz) δ (ppm) 3.32 (s, 6H), 6.08 (s, 2H), 6.22 (s, 1H), 7.18–7.35 (m, 4H), 10.75 (s, 2H, NH), 11.59 (s, 2H, NH); 13C NMR (DMSO-d6, 75 MHz) δ (ppm) 28.0 (2C), 46.5, 98.8 (2C), 104.5 (2C), 124.5 (2C), 126.0 (2C), 129.0 (2C), 130.3, 133.3, 139.9 (2C), 151.1 (2C), 158.6 (2C), 194.1; IR (KBr) νmax 3387.5, 3272.6, 1657.8, 1610.5 cm−1; MS (ESI) 492.5 ([M + H]+); anal. cald for C22H17N7O7 C, 53.77; H, 3.49; N, 19.95% found: C, 53.82; H, 3.57; N, 20.06%.
3o. Brown solid. Yield: 339 mg (75%); mp. > 300 °C; 1H NMR (DMSO-d6, 300 MHz) δ (ppm) 3.19 (s, 6H), 6.07 (s, 2H), 6.15 (s, 1H), 6.92–7.47 (m, 3H), 10.42 (s, 2H, NH), 11.80 (s, 2H, NH); 13C NMR (DMSO-d6, 75 MHz) δ (ppm) 28.1 (2C), 38.3, 98.3 (2C), 102.6 (2C), 125.6, 126.2, 127.2, 131.7 (2C), 139.4 (2C), 144.7, 151.0 (2C), 158.6 (2C), 194.0; IR (KBr) νmax 3369.5, 3270.2, 1688.5, 1553.2 cm−1; MS (ESI) 453.5 ([M + H]+); anal. cald for C20H16N6O5S C, 53.09; H, 3.56; N, 18.57% found: C, 53.15; H, 3.61; N, 18.64%.
3p. Brown solid. Yield: 386 mg (78%); mp. > 300 °C; 1H NMR (DMSO-d6, 300 MHz) δ (ppm) 3.18 (s, 6H), 6.11 (s, 2H), 6.37 (s, 1H), 7.60–8.75 (m, 7H), 10.76 (s, 2H), 11.58 (s, 2H); 13C NMR (DMSO-d6, 75 MHz) δ (ppm) 28.0 (2C), 45.9, 98.8 (2C), 104.2 (2C), 124.6, 126.9 (2C), 127.6, 128.1, 128.9, 129.3, 130.0, 130.6, 132.5, 133.2, 135.4, 139.8 (2C), 151.1 (2C), 158.6 (2C), 194.5; IR (KBr) νmax 3387.2, 3274.8, 1679.2, 1560.1 cm−1; MS (ESI) 497.5 ([M + H]+); anal. cald for C26H20N6O5 C, 62.90; H, 4.06; N, 16.93% found: C, 63.11; H, 4.09; N, 17.15%.

General procedure for the synthesis of compound 7

In a typical experimental procedure, 1,3-dimethylpyrrolo[2,3-d]pyrimidine-2,4-dione 1a (0.181 g, 1 mmol), 5-benzylidene-1,3-dimethylpyrimidine-2,4,6(1H,3H,5H)-trione 6 (0.244 g, 1 mmol), I2 (0.006 g, 5 mol%) and acetonitrile (5 mL) were stirred at room temperature for 2 h. After completion (monitored by TLC) of the reaction, the solid product obtained was filtered and recrystallized from ethanol. The structure of the compound was ascertained as 7a from the spectroscopic data and elemental analysis. Similarly compounds 7b–e were synthesized and characterized.
7a. White solid. Yield: 372 mg (88%); mp. 186.5–187.1 °C; 1H NMR (DMSO-d6, 300 MHz) δ (ppm) 2.90 (s, 3H), 3.07 (s, 3H), 3.20 (s, 3H), 3.37 (s, 3H), 4.37 (d, J = 4.17 Hz, 1H), 5.20 (d, J = 3.9 Hz, 1H), 6.26 (s, 1H), 6.73–7.05 (m, 5H), 11.65 (s, 1H); 13C NMR (DMSO-d6, 75 MHz) δ (ppm) 28.0, 28.2, 28.5, 31.0, 40.9, 52.7, 98.6, 103.4, 115.0, 119.0, 124.9, 128.6, 130.0, 130.4, 139.2, 151.1, 151.8, 154.8, 158.6, 167.8, 168.4; IR (KBr) νmax 3555.7, 3471.2, 1741.2, 1665.1 cm−1; MS (ESI) 424.5 ([M + H]+); anal. cald for C21H21N5O5 C, 59.57; H, 5.00; N, 16.54% found: C, 59.71; H, 5.19; N, 16.65%.
7b. White solid. Yield: 398 mg (88%); mp. 185.4–186.5 °C; 1H NMR (DMSO-d6, 300 MHz) δ (ppm) 2.90 (s, 3H), 3.07 (s, 3H), 3.20 (s, 3H), 3.37 (s, 3H), 3.68 (s, 3H), 4.38 (d, J = 3.18 Hz, 1H), 5.21 (d, J = 0.60 Hz, 1H), 6.26 (s, 1H), 6.64–6.82 (m, 5H), 11.66 (s, 1H); 13C NMR (DMSO-d6, 75 MHz) δ (ppm) 28.1, 28.2, 28.5, 31.0, 50.7, 58.8, 98.6, 103.4, 115.1, 119.0, 124.9, 128.6, 130.0, 130.3, 139.3, 151.1, 151.8, 154.8, 158.6, 167.8, 168.4; IR (KBr) νmax 3547.3, 3470.9, 1745.3, 1662 cm−1; MS (ESI) 454.6 ([M + H]+); anal. cald for C22H23N5O6 C, 58.27; H, 5.11; N, 15.44% found: C, 58.39; H, 5.29; N, 15.55%.
7c. White solid. Yield: 406 mg (87%); mp. 187.3–188.2 °C; 1H NMR (DMSO-d6, 300 MHz) δ (ppm) 2.90 (s, 3H), 3.07 (s, 3H), 3.20 (s, 3H), 3.37 (s, 3H), 4.38 (d, J = 3.24 Hz, 1H), 5.20 (d, J = 3.00 Hz, 1H), 6.27 (s, 1H), 6.64–7.06 (m, 4H), 11.65 (s, 1H); 13C NMR (DMSO-d6, 75 MHz) δ (ppm) 28.0, 28.2, 28.5, 31.0, 40.9, 52.7, 98.6, 103.4, 115.0, 119.0, 124.9, 128.6, 130.0, 130.4, 139.2, 151.1, 151.8, 154.8, 158.6, 167.8, 168.3; IR (KBr) νmax 3545.3, 3470.1, 1740.1, 1669.4 cm−1; MS (ESI) 469.1 ([M + H]+); anal. cald for C21H20N6O7 C, 53.85; H, 4.30; N, 17.94% found: C, 53.99; H, 4.49; N, 18.15%.
7d. White solid. Yield: 377 mg (88%); mp. 185.4–187.3 °C; 1H NMR (DMSO-d6, 300 MHz) δ (ppm) 2.90 (s, 3H), 3.06 (s, 3H), 3.20 (s, 3H), 3.37 (s, 3H), 4.37 (d, J = 4.14 Hz, 1H), 5.21 (d, J = 2.94 Hz, 1H), 6.25 (s, 1H), 6.62–7.03 (m, 3H), 11.64 (s, 1H); 13C NMR (DMSO-d6, 75 MHz) δ (ppm) 28.0, 28.1, 28.5, 31.0, 40.8, 52.5, 98.5, 103.6, 125.1, 126.2, 127.2, 130.4, 140.1, 145.3, 151.7, 154.5, 158.3, 167.7, 168.2; IR (KBr) νmax 3543.2, 3475.4, 1745.2, 1665.3 cm−1; MS (ESI) 430.5 ([M + H]+); anal. cald for C19H19N5O5S C, 53.14; H, 4.46; N, 16.31% found: C, 53.17; H, 4.49; N, 16.35%.
7e. White solid. Yield: 338 mg (87%); mp. 183.2–185.1 °C; 1H NMR (DMSO-d6, 300 MHz) δ (ppm) 0.87 (m, 6H), 2.33 (m, 1H), 2.90 (s, 3H), 3.05 (s, 3H), 3.20 (s, 3H), 3.37 (s, 3H), 4.37 (d, J = 3.51 Hz, 1H), 5.20 (d, J = 2.94 Hz, 1H), 6.23 (s, 1H), 11.66 (s, 1H); 13C NMR (DMSO-d6, 75 MHz) δ (ppm) 21.4 (2C), 28.0, 28.2, 28.5 (2C), 31.2, 33.0, 40.7, 98.5, 103.5, 135.2, 139.3, 151.7, 154.5, 158.8, 166.2, 168.7; IR (KBr) νmax 3532.1, 3473.6, 1730.5, 1665.2 cm−1; MS (ESI) 390.3 ([M + H]+); anal. cald for C18H23N5O5 C, 55.52; H, 5.95; N, 17.98% found: C, 55.53; H, 5.96; N, 17.99%.

General procedure for the synthesis of bis(pyrrolo[2,3-d]pyrimidinyl)methanes 9

In a typical experimental procedure, 5-((1,3-dimethyl-2,4-dioxo-2,3,4,7-tetrahydro-1H-pyrrolo[2,3-d]pyrimidin-6-yl)(phenyl)-methyl)-1,3-dimethylpyrimidine-2,4,6-(1H,3H,5H)-trione 7a (0.423 g, 1 mmol), 1,3-dimethylpyrrolo[2,3-d]pyrimidine-2,4-dione 1a (0.181 g, 1 mmol), I2 (0.006 g, 5 mol%) and acetonitrile (5 mL) were mixed and allowed to run under reflux condition for 3 h. After completion (monitored by TLC) of the reaction, the solid product obtained was filtered and recrystallized from ethanol. The structure of the compound was ascertained as bis(pyrrolo[2,3-d]pyrimidinyl)methane derivative 9a from the spectroscopic data and elemental analysis.
9a. Pink solid; yield: 423 mg (95%); mp. 288–290 °C; 1H NMR (DMSO-d6, 300 MHz) δ 3.19 (s, 6H), 3.39 (s, 6H), 5.40 (s, 1H), 5.76 (s, 2H), 7.22–7.39 (m, 5H), 11.74 (s, 2H, NH); 13C NMR (DMSO-d6, 75 MHz) δ 28.0 (2C), 31.1 (2C), 43.2, 98.4 (2C), 103.1 (2C), 127.5, 128.7 (2C), 128.8 (2C), 132.1 (2C), 139.6 (2C), 141.0, 151.1 (2C), 158.7 (2C); IR (KBr) νmax 3373.5, 3278.5, 1687.2, 1557.6 cm−1; MS (ESI) 447.5 ([M + H]+); anal. cald for C23H22N6O4 C, 61.87; H, 4.92; N, 18.82% found: C, 61.88; H, 4.93; N, 18.83%.
9b. Pinkish violet solid; Yield: 384 mg (92%); mp. > 300 °C; 1H NMR (DMSO-d6, 300 MHz) δ 3.17 (s, 3H), 3.26 (s, 3H), 5.38 (s, 1H), 5.45 (s, 1H), 5.72 (s, 1H), 7.09–7.59 (m, 5H), 10.32 (s, 2H, NH), 11.68 (s, 2H, NH); 13C NMR (DMSO-d6, 75 MHz) δ 28.6 (2C), 42.2, 99.1 (2C), 103.0 (2C), 125.2, 127.0 (2C), 128.8 (2C), 132.1 (2C), 140.1, 141.1 (2C), 151.0 (2C), 159.2 (2C); IR (KBr) νmax 3372.5, 3279.4, 1658.7, 1615.7 cm−1; MS (ESI) 419.4 ([M + H]+); anal. cald for C21H18N6O4 C, 60.27; H, 4.30; N, 20.08% found: C, 60.28; H, 4.34; N, 20.09%.
9c. Brown solid; yield: 360 mg (84%); mp. > 300 °C; 1H NMR (DMSO-d6, 300 MHz) δ 3.32 (s, 6H), 3.40 (s, 3H), 5.59 (s, 1H), 5.63 (s, 1H), 5.67 (s, 1H), 6.74–7.14 (m, 5H), 10.71 (br, 1H, NH), 11.68 (br, 2H, NH); 13C NMR (DMSO-d6, 75 MHz) δ 28.0, 28.6, 29.8, 36.3, 98.3, 99.0, 102.9, 104.2, 117.2, 119.3, 127.3, 128.8, 132.3, 139.5, 140.8, 140.9, 151.0, 151.2, 154.9, 158.6, 159.2, 159.5; IR (KBr) νmax 3375.4, 3278.2, 1657.3, 1613.2 cm−1; MS (ESI) 433.4 ([M + H]+); anal. cald for C22H20N6O4 C, 61.10; H, 4.66; N, 19.43% found: C, 61.22; H, 4.67; N, 19.56%.
9d. Brown solid; yield: 377 mg (82%); mp. > 300 °C; 1H NMR (DMSO-d6, 300 MHz) δ 3.32 (s, 6H), 3.40 (s, 3H), 3.70 (s, 3H), 5.59 (s, 1H), 5.63 (s, 1H), 5.67 (s, 1H), 6.74–6.88 (m, 4H), 10.70 (br, 1H, NH), 11.69 (br, 2H, NH); 13C NMR (DMSO-d6, 75 MHz) δ 28.0, 28.6, 29.8, 36.4, 58.5, 98.3, 99.0, 102.9, 104.2, 117.2, 119.3, 127.3, 128.8, 132.3, 139.5, 140.8, 140.97, 151.0, 151.2, 154.9, 158.6, 159.2, 159.5; IR (KBr) νmax 3369.4, 3272.5, 1656.7, 1619.2 cm−1; MS (ESI) 463.2 ([M + H]+); anal. cald for C23H22N6O5 C, 59.73; H, 4.79; N, 18.17% found: C, 59.82; H, 4.87; N, 18.26%.
9e. Brown solid; yield: 380 mg (80%); mp. > 300 °C; 1H NMR (DMSO-d6, 300 MHz) δ 3.32 (s, 6H), 3.38 (s, 3H), 5.52 (s, 1H), 5.61 (s, 1H), 5.69 (s, 1H), 6.31–7.14 (m, 4H), 10.71 (br, 1H, NH), 11.68 (br, 2H, NH); 13C NMR (DMSO-d6, 75 MHz) δ 28.0, 28.6, 29.8, 36.4, 98.3, 99.0, 102.9, 104.2, 117.2, 119.3, 127.3, 128.8, 132.3, 139.5, 140.8, 140.9, 151.0, 151.2, 154.9, 158.6, 159.2, 159.5; IR (KBr) νmax 3360.5, 3273.2, 1659.1, 1629.3 cm−1; MS (ESI) 478.5 ([M + H]+); anal. cald for C22H19N7O6 C, 55.35; H, 4.01; N, 20.54% found: C, 55.42; H, 4.17; N, 20.62%.
9f. Brown solid; yield: 414 mg (90%); mp. > 300 °C; 1H NMR (DMSO-d6, 300 MHz) δ 3.32 (s, 6H), 3.38 (s, 6H), 3.60 (s, 3H), 5.53 (s, 1H), 5.64 (s, 1H), 5.71 (s, 1H), 6.69–7.19 (m, 5H), 11.68 (s, 1H, NH); 13C NMR (DMSO-d6, 75 MHz) δ 28.0, 28.6, 29.8, 30.0, 31.0, 36.4, 98.3, 99.0, 102.9, 104.2, 117.2, 119.3, 127.3, 128.8, 132.3, 139.5, 140.8, 140.9, 151.0, 151.2, 154.9, 158.6, 159.2, 159.5; IR (KBr) νmax 3362.4, 3276.4, 1657.5, 1622.4 cm−1; MS (ESI) 461.6 ([M + H]+); anal. cald for C24H24N6O4 C, 62.60; H, 5.25; N, 18.25% found: C, 62.72; H, 5.27; N, 18.32%.
9g. Brown solid; yield: 436 mg (89%); mp. > 300 °C; 1H NMR (DMSO-d6, 300 MHz) δ 3.32 (s, 6H), 3.38 (s, 6H), 3.60 (s, 3H), 3.70 (s, 3H), 5.50 (s, 1H), 5.61 (s, 1H), 5.72 (s, 1H), 6.49–7.09 (m, 4H), 11.68 (s, 1H, NH); 13C NMR (DMSO-d6, 75 MHz) δ 28.0, 28.6, 29.8, 30.0, 31.0, 36.4, 58.5, 98.3, 99.1, 102.8, 104.2, 117.2, 119.3, 127.3, 128.8, 132.4, 139.5, 140.8, 140.9, 151.0, 151.2, 154.9, 158.6, 159.2, 159.5; IR (KBr) νmax 3361.5, 3174.4, 1667.5, 1620.4 cm−1; MS (ESI) 491.4 ([M + H]+); anal. cald for C25H26N6O5 C, 61.22; H, 5.34; N, 17.13% found: C, 61.32; H, 5.37; N, 17.22%.
9h. Brown solid; yield: 439 mg (87%); mp. > 300 °C; 1H NMR (DMSO-d6, 300 MHz) δ 3.32 (s, 6H), 3.39 (s, 6H), 3.59 (s, 3H), 5.54 (s, 1H), 5.63 (s, 1H), 5.75 (s, 1H), 6.35–7.14 (m, 4H), 11.65 (s, 1H, NH); 13C NMR (DMSO-d6, 75 MHz) δ 28.0, 28.6, 29.8, 30.0, 31.0, 36.4, 98.3, 99.1, 102.8, 104.2, 117.2, 119.3, 127.3, 128.8, 132.4, 139.5, 140.8, 140.9, 151.0, 151.2, 154.9, 158.6, 159.2, 159.5; IR (KBr) νmax 3365.6, 3170.5, 1669.4, 1625.3 cm−1; MS (ESI): 506.5 ([M + H]+); anal. cald for C24H23N7O6 C, 57.04; H, 4.59; N, 19.40% found: C, 57.12; H, 4.67; N, 19.50%.
9i. Brown solid; yield: 310 mg (70%); mp. > 300 °C; 1H NMR (DMSO-d6, 300 MHz) δ 3.32 (s, 6H), 3.39 (s, 3H), 3.59 (s, 3H), 5.53 (s, 1H), 5.65 (s, 1H), 5.77 (s, 1H), 6.73–7.14 (m, 5H), 10.70 (s, 1H, NH), 11.70 (s, 1H, NH); 13C NMR (DMSO-d6, 75 MHz) δ 28.0, 28.5, 29.7, 31.0, 36.4, 98.3, 99.2, 102.8, 104.2, 117.2, 119.3, 127.3, 128.8, 132.4, 139.5, 140.8, 140.9, 151.1, 151.2, 154.9, 158.6, 159.3, 159.5; IR (KBr) νmax: 3362.4, 3179.3, 1675.4, 1631.4 cm−1; MS (ESI): 447.8 ([M + H]+). Anal. Cald for C23H22N6O4: C, 61.87; H, 4.97; N, 18.82%; found: C, 61.92; H, 5.07; N, 18.94%.
9j. Brown solid; yield: 327 mg (69%); mp. > 300 °C; 1H NMR (DMSO-d6, 300 MHz) δ 3.32 (s, 6H), 3.39 (s, 3H), 3.58 (s, 3H), 3.70 (s, 3H), 5.50 (s, 1H), 5.63 (s, 1H), 5.74 (s, 1H), 6.71–7.12 (m, 4H), 10.71 (s, 1H, NH), 11.64 (s, 1H, NH); 13C NMR (DMSO-d6, 75 MHz) δ 28.0, 28.5, 29.7, 31.0, 36.4, 58.6, 98.3, 99.2, 102.8, 104.2, 117.2, 119.3, 127.3, 128.8, 132.4, 139.5, 140.8, 140.9, 151.1, 151.2, 154.9, 158.6, 159.3, 159.5; IR (KBr) νmax 3362.4, 3179.3, 1675.4, 1631.4 cm−1; MS (ESI) 477.1 ([M + H]+); anal. cald for C24H24N6O5 C, 60.50; H, 5.08; N, 17.64% found: C, 60.62; H, 5.17; N, 17.74%.
9k. Brown solid; yield: 333 mg (68%); mp. > 300 °C; 1H NMR (DMSO-d6, 300 MHz) δ 3.33 (s, 6H), 3.38 (s, 3H), 3.56 (s, 3H), 5.54 (s, 1H), 5.67 (s, 1H), 5.76 (s, 1H), 6.72–7.15 (m, 4H), 10.73 (s, 1H, NH), 11.67 (s, 1H, NH); 13C NMR (DMSO-d6, 75 MHz) δ 28.0, 28.5, 29.7, 31.0, 36.4, 98.3, 99.2, 102.8, 104.2, 117.2, 119.3, 127.3, 128.8, 132.4, 139.5, 140.8, 140.9, 151.1, 151.2, 154.9, 158.6, 159.3, 159.5; IR (KBr) νmax 3364.7, 3175.2, 1676.3, 1635.6 cm−1; MS (ESI) 492.4 ([M + H]+); anal. cald for C23H21N7O6 C, 56.21; H, 4.31; N, 19.95% found: C, 56.32; H, 4.37; N, 20.08%.
9l. Brown solid; yield: 363 mg (83%); mp. > 300 °C; 1H NMR (DMSO-d6, 300 MHz) δ 3.19 (s, 6H), 3.40 (s, 3H), 5.66 (s, 1H), 5.93 (s, 2H), 6.91–7.46 (m, 3H), 10.30 (s, 1H, NH), 11.67 (s, 2H, NH); 13C NMR (DMSO-d6, 75 MHz) δ 27.9, 31.0 (2C), 38.3, 98.3 (2C), 102.6 (2C), 125.6, 126.2, 127.2, 131.7 (2C), 140.0 (2C), 145.7, 150.9 (2C), 157.6 (2C); IR (KBr) νmax: 3376.3, 3275.3, 1659.2, 1610.2 cm−1; MS (ESI): 439.2 ([M + H]+). Anal. cald for C20H18N6O4S: C, 54.79; H, 4.14; N, 19.17%; found: C, 54.80; H, 4.16; N, 19.18%.
9m. Brown solid; yield: 326 mg (82%); mp. > 300 °C; 1H NMR (DMSO-d6, 300 MHz) δ 0.86 (m, 6H), 2.37 (m, 1H), 3.18 (s, 6H), 3.43 (s, 3H), 3.60 (d, 1H), 6.25 (s, 2H), 10.52 (s, 1H, NH), 11.65 (s, 2H, NH); 13C NMR (DMSO-d6, 75 MHz) δ 21.4 (2C), 28.0 (2C) 31.2, 31.6, 45.3, 98.5 (2C), 101.7 (2C), 133.3 (2C), 139.1 (2C), 153.0 (2C), 159.8 (2C); IR (KBr) νmax: 3375.2, 3265.2, 1655.4, 1615.7 cm−1; MS (ESI): 399.4 ([M + H]+). Anal. cald for C19H22N6O4: C, 57.28; H, 5.57; N, 21.09%; found: C, 57.30; H, 5.59; N, 21.11%.
9n. Brown solid; yield: 396 mg (85%); mp. > 300 °C; 1H NMR (DMSO-d6, 300 MHz) δ 3.18 (s, 6H), 3.35 (s, 6H), 3.40 (s, 3H), 5.65 (s, 1H), 5.93 (s, 2H), 6.93–7.47 (m, 3H), 11.68 (s, 1H, NH); 13C NMR (DMSO-d6, 75 MHz) δ 26.8 (2C), 27.9 (2C), 30.2, 39.0, 98.2 (2C), 102.5 (2C), 125.6, 126.2, 127.3, 131.7 (2C), 140.2 (2C), 145.6, 151.0 (2C), 158.1 (2C); IR (KBr) νmax: 3381.2, 3270.5, 1650.9, 1619.5 cm−1; MS (ESI): 467.5 ([M + H]+). Anal. cald for C22H22N6O4S: C, 56.64; H, 4.75; N, 18.01%; found: C, 56.66; H, 4.76; N, 18.03%.
9o. Brown solid; yield: 357 mg (84%); mp. > 300 °C; 1H NMR (DMSO-d6, 300 MHz) δ 0.88 (m, 6H), 2.35 (m, 1H), 3.19 (s, 6H), 3.40 (s, 6H), 3.53 (s, 3H), 3.61 (d, 1H), 6.26 (s, 2H), 11.67 (s, 1H, NH); 13C NMR (DMSO-d6, 75 MHz) δ 21.4 (2C), 28.2 (2C), 30.3 (3C), 31.5, 45.2, 98.5 (2C), 101.7 (2C), 134.0 (2C), 140.2 (2C), 153.1 (2C), 157.2 (2C); IR (KBr) νmax: 3381.4, 3262.7, 1651.8, 1619.2 cm−1; MS (ESI): 427.8 ([M + H]+). Anal. cald for C21H26N6O4: C, 59.14; H, 6.14; N, 19.71%; found: C, 59.16; H, 6.15; N, 19.72%.
9p. Brown solid; yield: 316 mg (70%); mp. > 300 °C; 1H NMR (DMSO-d6, 300 MHz) δ 3.19 (s, 6H), 3.35 (s, 3H), 3.45 (s, 3H), 5.62 (s, 1H), 5.95 (s, 2H), 6.89–7.48 (m, 3H), 10.59 (s, 1H, NH), 11.68 (s, 1H, NH); 13C NMR (DMSO-d6, 75 MHz) δ 26.8 (2C), 29.0, 30.2, 39.1, 98.2 (2C), 102.5 (2C), 125.5, 126.3, 127.2, 132.8 (2C), 140.3 (2C), 145.5, 151.1 (2C), 158.3 (2C); IR (KBr) νmax: 3371.5, 3269.2, 1650.4, 1619.3 cm−1; MS (ESI): 453.2 ([M + H]+). Anal. cald for C21H20N6O4S: C, 55.74; H, 4.46; N, 18.57%; found: C, 56.76; H, 4.47; N, 18.58%.
9q. Brown solid; yield: 280 mg (68%); mp. > 300 °C; 1H NMR (DMSO-d6, 300 MHz) δ 0.87 (m, 6H), 2.36 (m, 1H), 3.19 (s, 6H), 3.41 (s, 3H), 3.54 (s, 3H), 3.61 (d, 1H), 6.25 (s, 2H), 10.70 (s, 1H, NH), 11.67 (s, 1H, NH); 13C NMR (DMSO-d6, 75 MHz) δ 21.4 (2C), 29.1 (2C), 30.3 (2C), 31.5, 45.2, 98.5 (2C), 101.7 (2C), 134.1 (2C), 140.2 (2C), 153.1 (2C), 157.2 (2C); IR (KBr) νmax: 3383.7, 3252.3, 1655.6, 1615.7 cm−1; MS (ESI): 413.4 ([M + H]+). Anal. cald for C20H24N6O4: C, 58.24; H, 5.87; N, 20.38%; found: C, 58.27; H, 5.88; N, 20.39%.

Acknowledgements

We thank the CSIR, New Delhi for financial assistance (CAAF-NE project). MS thanks the DST, New Delhi for the INSPIRE Fellowship.

References

  1. (a) K. V. Rao, J. Med. Chem., 1968, 11, 939–941 CrossRef CAS; (b) Q. Dang and J. E. Gomez-Galeno, J. Org. Chem., 2002, 7, 8703–8705 CrossRef PubMed.
  2. N. Danchev, A. Bijev, D. Yaneva and S. Vladimirova, Arch. Pharm. Chem. Life Sci., 2006, 339, 670–674 CrossRef CAS PubMed.
  3. M. F. Jarvis, H. Yu, B. F. Cox and J. Polakowski, Pain, 2002, 96, 107–118 CrossRef CAS.
  4. A. Gangjee, H. D. Jain and R. L. Kisliuk, Bioorg. Med. Chem. Lett., 2005, 15, 2225–2230 CrossRef CAS PubMed.
  5. (a) E. Declercq, J. Balzarini, D. Madej and F. Hansske, J. Med. Chem., 1987, 30, 481–486 CrossRef CAS; (b) S. H. Krawczyk, M. R. Nassiri, L. S. Kucera and E. R. Kern, J. Med. Chem., 1995, 38, 4106–4114 CrossRef CAS.
  6. G. L. Bundy, D. E. Ayer, L. S. Banitt, K. L. Belonga, S. A. Mizsak, J. R. Palmer, J. M. Tustin, J. E. Chin, E. D. Hall, K. L. Linseman, I. M. Richards, H. M. Sherch, F. F. Sun, P. A. Yonkers, P. G. Larson, J. M. Lin, G. E. Padbury, C. S. Aaron and J. K. Mayo, Med. Chem., 1995, 38, 4161–4163 CrossRef CAS.
  7. (a) M. S. Cohen, C. Zhang, K. M. Shokat and J. Taunton, Science, 2005, 308, 1318–1321 CrossRef CAS PubMed; (b) N. Foloppe, L. M. Fisher, R. Howes, P. Kierstan, A. Potter, A. G. S. Robertson and A. E. Surgenor, J. Med. Chem., 2005, 48, 4332–4345 CrossRef CAS PubMed; (c) J. J. Caldwell, T. G. Davies, A. R. R. Doiiald, T. McHardy, M. G. Rowlands, G. W. H. Aherne, L. K. Linter, K. Taylor, R. Ruddle, F. I. Raynaud, M. Verdonk, P. Workman, M. D. Garrett and I. Collins, J. Med. Chem., 2008, 51, 2147–2157 CrossRef CAS PubMed.
  8. T. A. Soucy, P. G. Smith, M. A. Milhollen, A. J. Berger, J. M. Gavin, S. Adhikari, J. E. Brownell, K. E. Burke, D. P. Cardin, S. Critchley, C. A. Cullis, A. Doucette, J. J. Garnsey, J. L. Gaulin, R. E. Gershman, A. R. Lublinsky, A. McDonald, H. Mizutani, U. Narayanan, E. J. Olhava, S. Peluso, M. Rezaei, M. D. Sintchak, T. Talreja, M. P. Thomas, T. Traore, S. Vyskocil, G. S. Weatherhead, J. Yu, J. Zhang, L. R. Dick, C. F. Claiborne, M. Rolfe, J. B. Bolen and S. P. Langston, Nature, 2009, 458, 732–736 CrossRef CAS PubMed.
  9. S. D. Chamberlain, A. M. Redman, S. Patnaik, K. Brickhouse, Y. C. Chew, F. Deanda, R. Gerding, H. S. Lei, G. Moorthy, M. Patrick, K. L. Stevens, J. W. Wilson and J. B. Shotwell, Bioorg. Med. Chem. Lett., 2009, 19, 373–377 CrossRef CAS PubMed.
  10. S. Nagashima, T. Hondo, H. Nagata, T. Ogiyama, J. Maeda, H. Hoshii, T. Kontani, S. Kuromitsu, K. Ohga, M. Orita, K. Ohno, A. Moritomo, K. Shiozuka, M. Furutani, M. Takeuchi, M. Ohta and S. Tsukamoto, Bioorg. Med. Chem., 2009, 17, 6926–6936 CrossRef CAS PubMed.
  11. A. Gangjee, Y. Zhao, L. Lin, S. Raghavan, E. G. Roberts, A. L. Risinger, E. Hamel and S. L. Mooberry, J. Med. Chem., 2010, 53, 8116–8128 CrossRef CAS PubMed.
  12. (a) D. Bergstrom, X. Lin and P. Beal, J. Org. Chem., 1991, 56, 5598–5602 CrossRef CAS; (b) F. Seela and U. Kretschmer, J. Heterocycl. Chem., 1990, 27, 479–486 CrossRef CAS.
  13. D. E. Bergstrom, A. J. Brattesani, M. K. Ogawa, P. A. Reddy, M. J. Schweickert, J. Balzarini and E. De Clercq, J. Med. Chem., 1984, 27, 285–292 CrossRef CAS.
  14. For recent reviews, see: (a) A. E. Shilov and G. B. Shul'pin, Chem. Rev., 1997, 97, 2879–2932 CrossRef CAS PubMed; (b) G. Dyker, Angew. Chem., Int. Ed., 1999, 38, 1698–1712 CrossRef; (c) C. Jia, T. Kitamura and Y. Fujiwara, Acc. Chem. Res., 2001, 34, 633–639 CrossRef CAS PubMed.
  15. (a) D. Prim, J.-M. Campagne, D. Joseph and B. Andrioletti, Tetrahedron, 2002, 58, 2041–2045 CrossRef CAS; (b) M. Miura and M. Nomura, Top. Curr. Chem., 2002, 219, 211–241 CrossRef CAS.
  16. (a) J. M. Fox, X. Huang, A. Chieffi and S. L. Buchwald, J. Am. Chem. Soc., 2000, 122, 1360–1370 CrossRef CAS; (b) H. B. Deng and J. P. Konopelski, Org. Lett., 2001, 3, 3001–3004 CrossRef CAS PubMed; (c) M. Palucki and S. L. Buchwald, J. Am. Chem. Soc., 1997, 119, 11108–11109 CrossRef CAS; (d) V. G. Zaitsev, D. Shabashov and O. Daugulis, J. Am. Chem. Soc., 2005, 127, 13154–13155 CrossRef CAS PubMed; (e) D. Habashov and O. Daugulis, Org. Lett., 2005, 7, 3657–3659 CrossRef PubMed; (f) D. Shabashov and O. Daugulis, J. Am. Chem. Soc., 2010, 132, 3965–3972 CrossRef CAS PubMed; (g) D. Kalyani, N. R. Deprez, L. V. Desai and M. S. Sanford, J. Am. Chem. Soc., 2005, 127, 7330–7331 CrossRef CAS PubMed; (h) S. J. Pastine, D. V. Gribkov and D. Sames, J. Am. Chem. Soc., 2006, 128, 14220–14221 CrossRef CAS PubMed.
  17. B. M. Laloo, H. Mecadon, M. R. Rohman, I. Kharbangar, I. Kharkongor, M. Rajbangshi, R. Nongkhlaw and B. Myrboh, J. Org. Chem., 2012, 77, 707–712 CrossRef CAS PubMed.
  18. (a) P. Borah, P. S. Naidu, S. Majumder and P. J. Bhuyan, RSC Adv., 2013, 3, 20450–20455 RSC; (b) S. Majumder, P. Borah and P. J. Bhuyan, Mol. Diversity, 2012, 16, 279–289 CrossRef CAS PubMed; (c) B. Baruah and P. J. Bhuyan, Tetrahedron, 2009, 65, 7099–7104 CrossRef CAS PubMed; (d) S. Majumder, M. Sharma and P. J. Bhuyan, Tetrahedron Lett., 2013, 54, 6868–6870 CrossRef CAS PubMed.
  19. (a) M. Gogoi, P. J. Bhuyan and J. S. Sandhu, Chem. Commun., 1984, 30, 1549–1550 RSC; (b) P. J. Bhuyan, R. C. Boruah and J. S. Sandhu, J. Org. Chem., 1990, 55, 568–571 CrossRef CAS; (c) P. J. Bhuyan, J. S. Sandhu and A. C. Ghosh, Tetrahedron Lett., 1996, 37, 1853–1854 CrossRef CAS; (d) M. L. Deb, S. Majumder and P. J. Bhuyan, Synlett, 2009, 1982–1984 CAS; (e) I. Devi and P. J. Bhuyan, Tetrahedron Lett., 2005, 46, 5727–5729 CrossRef CAS PubMed; (f) B. Baruah and P. J. Bhuyan, Tetrahedron Lett., 2009, 50, 243–245 CrossRef CAS PubMed.
  20. M. Sharma and P. J. Bhuyan, RSC Adv., 2014, 4, 15709–15712 RSC.
  21. (a) N. Kornblum, J. W. Powers, G. J. Anderson, W. J. Jones, H. O. Larson, O. Levand and W. M. Weaver, J. Am. Chem. Soc., 1957, 79, 6562 CrossRef CAS; (b) A. J. Mancuso and D. Swern, Synthesis, 1981, 165–185 CrossRef CAS; (c) T. Okamoto, T. Kakinami, T. Nishimura, I. Hermawan and S. Kajigaeshi, Bull. Chem. Soc. Jpn., 1992, 65, 1731–1733 CrossRef CAS; (d) W.-J. Xue, Q. Li, Y.-P. Zhu, J.-G. Wang and A.-X. Wu, Chem. Commun., 2012, 48, 3485–3487 RSC.
  22. M. L. Deb, S. Mazumder, B. Baruah and P. J. Bhuyan, Synthesis, 2010, 929–932 CAS.
  23. M. L. Deb and P. J. Bhuyan, Tetrahedron Lett., 2005, 46, 6453–6456 CrossRef CAS PubMed.
  24. L. L. Gozalishvili, T. V. Beryozkina, I. V. Omelchenko, R. I. Zubatyuk, O. V. Shishkin and N. N. Kolos, Tetrahedron, 2008, 64, 8759–8765 CrossRef CAS PubMed.

Footnote

Electronic supplementary information (ESI) available: Compound characterizations data (1H NMR, 13C NMR spectra and elemental analysis). See DOI: 10.1039/c4ra09729g

This journal is © The Royal Society of Chemistry 2014
Click here to see how this site uses Cookies. View our privacy policy here.