Selective hydrogenation of 2-pentenal using highly dispersed Pt catalysts supported on ZnSnAl mixed metal oxides derived from layered double hydroxides†
Abstract
A highly dispersed Pt catalyst supported on ZnSnAl mixed metal oxides (MMO), with Pt in single-atom and small nanoclusters, was produced by the induction of lattice-confined Sn sites in layered double hydroxides (LDHs) and used in the selective hydrogenation of 2-pentenal. Compared with the Pt/Al2O3, Pt–SnOx/Al2O3 and MgSnAl-MMO supported Pt catalysts, the optimized ZnSnAl-MMO supported Pt catalyst gave a higher selectivity to 2-pentenol (82.2%) at 28.5% conversion of 2-pentenal. Based on catalytic evaluation results and catalyst characterization with XRD, Pyridine-IR, H2-TPR, XPS, and HAADF-STEM, it was found that the combined effects of Sn and Zn species promoted the performance of the Pt catalyst by favoring the activation of the C
O bond. In addition, due to the size effect and electronic effect on the Pt species, the highly dispersed Pt induced by the lattice-confined Sn sites in ZnSnAl-LDH enhanced the catalytic activity of Pt/Zn(1Sn)(Al)O/Al2O3 by 2.7 times compared with Pt–SnOx/Zn(Al)O/Al2O3.

Please wait while we load your content...