Issue 23, 2021

Flame retardant polyphosphoester copolymers as solid polymer electrolyte for lithium batteries

Abstract

Solid-state lithium batteries are considered one of the most promising battery systems due to their high volumetric energy density and safety. Poly(ethylene oxide) (PEO) is the most commonly used solid polymer electrolyte in solid-state batteries. In this article, we introduce new polyphosphoester polymer electrolytes, which show improved flame retardant properties in comparison with PEO. For this purpose, new polyphosphoester copolymers were synthesized, including phosphoester, poly(ethylene glycol) (PEG) and UV cross-linkable vinyl units. Solid polymer electrolyte films based on polyphosphoester copolymers and lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) were prepared by curing under UV-light. The crystallinity present in the copolymers due to the PEG segment decreases with the amount of salt in the electrolyte, as seen by DSC. Solid polymer electrolytes based on polyphosphoester copolymers show ionic conductivity values as high as 2 × 10−4 S cm−1 at 70 °C. FTIR analysis showed that lithium cations complexed with phosphoester groups provoked an increase in the lithium transference number to 0.26 as compared to that of PEO 0.17. Pyrolysis flow combustion calorimetry (PCFC) or micro-calorimetry results demonstrated the improved flame retardancy of the polyphosphoesters in comparison to a reference PEO based polymer electrolyte. The selected polyphosphoester solid electrolyte was investigated in a solid-state lithium cell Li0/polymer electrolyte/LFP battery showing a specific capacity retention close to 80% and coulombic efficiency greater than 98% over 100 cycles at 70 °C.

Graphical abstract: Flame retardant polyphosphoester copolymers as solid polymer electrolyte for lithium batteries

Supplementary files

Article information

Article type
Paper
Submitted
12 Mar 2021
Accepted
17 May 2021
First published
19 May 2021

Polym. Chem., 2021,12, 3441-3450

Flame retardant polyphosphoester copolymers as solid polymer electrolyte for lithium batteries

J. L. Olmedo-Martínez, L. Meabe, R. Riva, G. Guzmán-González, L. Porcarelli, M. Forsyth, A. Mugica, I. Calafel, A. J. Müller, P. Lecomte, C. Jérôme and D. Mecerreyes, Polym. Chem., 2021, 12, 3441 DOI: 10.1039/D1PY00344E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements