We report the synthesis of the lanthanide-(bis)boryloxide complex \([\text{Dy} \{ \text{OB(NArCH)}_2 \}_2(\text{THF})_2][\text{BPh}_4]\) (2Dy, Ar = 2,6-Pr\(_2\)C\(_6\)H\(_3\)), with idealised \(D_{4h}@\text{Dy(m)} \) point-group symmetry. Complex 2Dy exhibits single-molecule magnetism (SMM), with one of the highest energy barriers (\(U_{\text{eff}} = 1565(298) \) K) of any six-coordinate lanthanide-SMM. Complex 2Dy validates electrostatic model predictions, informing the future design of lanthanide-SMMs.

With potential applications in quantum technologies and high-density data storage, the field of lanthanide (Ln) single-molecule magnetism (SMM) has expanded rapidly in recent years due to large energy barriers to reversal of magnetisation (\(U_{\text{eff}} \)) and blocking temperatures (\(T_B \)). The principal factor controlling the performance of Ln-SMM is the crystal field (CF), and, following intuitive electrostatic principles, strong uniaxial CFs for Dy(m) stabilise the largest projections of the total angular momentum, \(m_J = \pm 15/2 \), which has an oblate spheroidal electron density distribution. Thus, there has been great interest in controlling the symmetry of the coordination sphere of Dy(m) to engineer improved SMM performance. However, Ln-SMM is often subject to zero-field quantum tunnelling of the magnetisation (QTM), which can bypass the anisotropy barrier, which is known to relate to hyperfine coupling and dipolar magnetization (QTM) that can bypass the anisotropy barrier, \(\text{Ln-SMM} \) is often subject to zero-field quantum tunnelling of the magnetisation (QTM) that can bypass the anisotropy barrier, \(\text{Ln-SMM} \) is often subject to zero-field quantum tunnelling of the magnetisation (QTM) that can bypass the anisotropy barrier, \(\text{Ln-SMM} \) is often subject to zero-field quantum tunnelling of the magnetisation (QTM) that can bypass the anisotropy barrier, \(\text{Ln-SMM} \) is often subject to zero-field quantum tunnelling of the magnetisation (QTM) that can bypass the anisotropy barrier, \(\text{Ln-SMM} \) is often subject to zero-field quantum tunnelling of the magnetisation (QTM) that can bypass the anisotropy barrier, \(\text{Ln-SMM} \) is often subject to zero-field quantum tunnelling of the magnetisation (QTM) that can bypass the anisotropy barrier, \(\text{Ln-SMM} \) is often subject to zero-field quantum tunnelling of the magnetisation (QTM) that can bypass the anisotropy barrier, \(\text{Ln-SMM} \) is often subject to zero-field quantum tunnelling of the magnetisation (QTM) that can bypass the anisotropy barrier, \(\text{Ln-SMM} \) is often subject to zero-field quantum tunnelling of the magnetisation (QTM) that can bypass the anisotropy barrier, \(\text{Ln-SMM} \) is often subject to zero-field quantum tunnelling of the magnetisation (QTM) that can bypass the anisotropy barrier, \(\text{Ln-SMM} \) is often subject to zero-field quantum tunnelling of the magnetisation (QTM) that can bypass the anisotropy barrier, \(\text{Ln-SMM} \) is often subject to zero-field quantum tunnelling of the magnetisation (QTM) that can bypass the anisotropy barrier, \(\text{Ln-SMM} \) is often subject to zero-field quantum tunnelling of the magnetisation (QTM) that can bypass the anisotropy barrier, \(\text{Ln-SMM} \) is often subject to zero-field quantum tunnelling of the magnetisation (QTM) that can bypass the anisotropy barrier, \(\text{Ln-SMM} \) is often subject to zero-field quantum tunnelling of the magnetisation (QTM) that can bypass the anisotropy barrier, \(\text{Ln-SMM} \) is often subject to zero-field quantum tunnelling of the magnetisation (QTM) that can bypass the anisotropy barrier, \(\text{Ln-SMM} \) is often subject to zero-field quantum tunnelling of the magnetisation (QTM) that can bypass the anisotropy barrier, \(\text{Ln-SMM} \) is often subject to zero-field quantum tunnelling of the magnetisation (QTM) that can bypass the anisotropy barrier, \(\text{Ln-SMM} \) is often subject to zero-field quantum tunnelling of the magnetisation (QTM) that can bypass the anisotropy barrier, \(\text{Ln-SMM} \) is often subject to zero-field quantum tunnelling of the magnetisation (QTM) that can bypass the anisotropy barrier, \(\text{Ln-SMM} \) is often subject to zero-field quantum tunnelling of the magnetisation (QTM) that can bypass the anisotropy barrier, \(\text{Ln-SMM} \) is often subject to zero-field quantum tunnelling of the magnetisation (QTM) that can bypass the anisotropy barrier, \(\text{Ln-SMM} \) is often subject to zero-field quantum tunnelling of the magnetisation (QTM) that can bypass the anisotropy barrier, \(\text{Ln-SMM} \) is often subject to zero-field quantum tunnelling of the magnetisation (QTM) that can bypass the anisotropy barrier.

As a result of the development of the electrostatic model, developing different geometries and thus metal point group symmetries has become a burgeoning area of investigation because some point groups prevent transverse CF terms by symmetry, meaning that the prevalence of QTM processes should be greatly diminished. Complexes with \(S_4/D_{4h} \), \(C_{3v}/D_{3h} \), \(S_{12}/D_{6h} \), \(D_{4h} \), and \(C_n \) (where \(n \geq 7 \)) have been found to be particularly effective. However, Ln-SMM complexes with \(D_{4h}@\text{Dy(m)} \) symmetry at the metal remain rare, a vexatious situation considering the dominance of \(O_h \) and \(D_{4h} \) complexes in coordination chemistry in general.

Around twenty (pseudo) \(O_h \) and \(D_{4h}@\text{Dy-SMM} \) complexes are known, but few exhibit \(U_{\text{eff}} \) values > 700 K: notable examples include \([\text{Dy}(\text{bipam})]_3 \) \((721/813 \) K\),1,2 \([\text{Dy}(\text{NC(NarCH)}_2)][(\text{Cl})(\text{THF})_2] \) \((803 \) K, Ar = 2,6-Pr\(_2\)C\(_6\)H\(_3\)),13 \([\text{Dy}(\text{Cy}_3\text{PO})(\text{I})(\text{THF})_3][\text{BPh}_4] \) \((1062 \) K\),14 \([\text{Dy}(\text{DiMeQ})_2(\text{Cl})(\text{H}_2\text{O})][\text{BPh}_4] \) \((1100 \) K\),15 and recently \([\text{Dy}(\text{OBu})_2(\text{py}-4\text{R})] \) \((1810–2075 \) K, R = Ph, N(CH\(_2\)CH\(_2\))\(_2\)CH\(_2\), N(CH\(_2\)CH\(_2\))\(_2\))\(_2\)).16 For \(D_{4h}@\text{Dy(m)} \) SMMs, the latter three bis(alkoxide) complexes exhibit remarkable \(U_{\text{eff}} \) values, yet conversely \(D_{4h}@\text{Dy(m)} \) \([\text{Dy}(\text{carbazolyl})_2(\text{L})]_2 \) \((L = \text{py}, \text{THF}) \) exhibit \(U_{\text{eff}} \) barriers of 57–72 K.17 This is surprising because electrostatic models predict that \([\text{Dy}(\text{X})_2(\text{THF})_2]^+ \) \((X = \text{monoanionic ligand}) \) species should exhibit \(U_{\text{eff}} \) values of ~860–1500 K.18 The experimental \(D_{4h}@\text{Dy(m)} \) \(U_{\text{eff}} \) variance of ~2000 K suggests that much remains to be understood in electrostatic models, and so further data are required to validate or modify electrostatic potential theory.

Monoanionic O-donor ligands have proven particularly effective in Dy-SMM complexes. Our attention was drawn to the boryloxide ligand \(\text{OB(NarCH)}_2 \), which is isoelectronic to the imine \(\text{NC(NarCH)}_2 \) ligand used in \([\text{Dy}(\text{NC(NarCH)}_2)][(\text{Cl})(\text{THF})_2] \).13 Though boryloxide ligands are poorer donors compared to the NH-imine, we surmised that a Dy-bis (boryloxide) complex could provide a high performance \(D_{4h}@\text{Dy(m)} \) SMM complex to compare to electrostatic model predictions. Further motivation stemmed from the fact that \(N \)-substituted Ln-boryloxide complexes are rare, and have resulted from tris(pyrazolyl)borate decomposition rather than from targeted syntheses. Here, we present the realisation of our goal, which has resulted in a \(D_{4h}@\text{Dy(m)} \) complex with one of the largest \(U_{\text{eff}} \) values to date. These results inform the electrostatic model and thus could assist the targeted design of improved lanthanide SMM.
Treatment of $[\text{Dy}(\text{BH}_4)_6(\text{THF})_3]^{19}$ with two equivalents of $[\text{KOB(NArCH)}_2]_{20}$ in toluene proceeds with elimination of KBH$_4$ to give, after work-up, the dysprosium bis(boryloxide) complex $[\text{Dy}([\text{OB(NArCH)}_2]_2(\text{BH}_4))(\text{THF})]_2$ $\text{ endemic } 1\text{Dy}$), isolated as colourless crystals in 86% yield, Scheme 1. Following isolation, the coordinated BH$_4$ anion can be replaced with the non-coordinating BPh$_4$ anion, using [Ph$_3$C][BPh$_4$] or [HNMe$_3$][BPh$_4$], in THF, to produce [Dy([OB(NArCH)$_2]_2(\text{THF}))_2][\text{BPh}_4]$ (2Dy), Scheme 1. Both routes are synthetically effective, with isolated crystalline yields of 2Dy of 77 and 94%, respectively, though the latter route is more practicable not only for increased yield compared to the former but because gaseous by-products are formed, simplifying work-up. To give confidence in the formulations of 1Dy and 2Dy, we also prepared the yttrium analogues 1Y and 2Y. Attempts to abstract the BH$_4$ anion from 1Ln in non-polar solvents did not give crystalline material, but subsequent addition of THF and recrystallisation gave 2Ln.

The 1H, 11B, and 13C NMR spectra of 1Y and 2Y are consistent with their structures, with the BH$_4$ ligand in 1Y (11B δ = 28.4 ppm) clearly being replaced by the BPh$_4$ anion in 2Y (11B δ = 6.5 ppm), though the characteristic boryl resonance is virtually unshifted from 1Y to 2Y (11B δ = 21.5, 21.6 ppm, respectively). The IR spectra of 1Y and 1Dy exhibit absorptions that are characteristic of an ionic coordination mode of BH$_4^-$, and their absence in the corresponding spectra of 2Y and 2Dy is consistent with the exchange of BPh$_4^-$ for BH$_4^-$. The solid-state structure of 2Dy was determined by single crystal X-ray diffraction and is shown in Fig. 1. The compound crystallises as a separated ion pair where the cation features a pseudo-octahedral Dy ion with two axial trans boryloxide and four equatorial THF ligands. In the crystal examined, the shortest Dy···Dy interaction is 13.915(6) Å. There is formally a C_2 rotation axis passing through O2···O4 and a vertical mirror plane passing through the O2–O1–O4–O1A plane (hence there is disorder in the structure), but the complex is very close to D_{4h} point symmetry at the metal: the O1–Dy–O1A angle is 175.9(3)$^\circ$ and the O1–Dy–O2/3/4 angles range from 86.2(7) to 94.5(7)$^\circ$. The unique 2Dy Dy–O1 bond length is 2.136(5) Å, which is slightly longer than the Dy–O$_\text{B}$ distances of 2.089(10)/2.113(11) Å in 1Dy, which likely reflects the absence of a fourth equatorial donor in 1Dy compared to 2Dy. Unsurprisingly, in 2Dy the Dy–O2/3/4 bond lengths are considerably longer, ranging from 2.346(9) to 2.365(8) Å. Interestingly, the two boryloxide ligands tilt towards each other on one side of the complex (removing the putative C$_4$ rotation axis), with B–O–Dy angles of 169.7(5)$^\circ$, but despite the tilting the B–O distance of 1.367(10) Å is statistically indistinguishable to other complexes. Although in many regards the structures of 2Dy and 2Y are very similar, we note a key difference, which is in 2Dy the two boryloxide ligands adopt an eclipsed arrangement, whereas in 2Y they are arranged orthogonally and so 2Dy and 2Y are not isostructural with one another, which prevents meaningful magnetic doping dilution experiments in this case. The $\chi_{M,T}$ value of 14.71 cm3 mol$^{-1}$ K for 2Dy at 298 K is indicative of a single Dy(III) ion (expected 14.2 cm3 mol$^{-1}$ K) (Fig. S13, ESI†). This decreases only moderately until below 20 K where it falls precipitously to ca. 6 cm3 mol$^{-1}$ K at 1.8 K. In zero direct current field, alternating current susceptibility data for 2Dy reveal peaks in the out-of-phase component up to 86 K (Fig. S15–S18, ESI†). Fitting these data to a generalised Debye model using the CC-FIT2 code gives relaxation rates and distribution parameters which we convert to estimated standard deviations (esds) note there is a high-frequency relaxation process that appears just above the frequency window of our instrument below 16 K, and so we fit the data using a two-process model but disregard the data for the poorly-defined fast-process. Fitting the temperature dependence of the magnetic
relaxation rates with the expression $\tau = 1 = \tau_0^{-1} \exp[-U_{\text{eff}}/kT] + CT^n + \tau_{\text{QTM}}^{-1}$ gives $U_{\text{eff}} = 1565(298)$ K, $\tau_0 = 10^{-11.6(1.6)}$ s, $C = 10^{-3.00(0.45)}$ s$^{-1}$ K$^{-n}$, $n = 3.14(0.25)$, $\tau_{\text{QTM}} = 10^{-0.74(0.16)}$ s, Fig. 2. This indicates a very large Orbach relaxation barrier, surpassed only by a handful of compounds\cite{3} here the large uncertainty in the Orbach process is observed coupled with the esds from the approximations made, these predictions are rather accurate. However, the third excited state at 1536 K is very mixed (28% $m_J = \pm 1/2$, 26% $m_J = \pm 1/2$, 18% $m_J = \pm 9/2$, 11% $m_J = \mp 9/2$), has very large transverse g-values ($g_x = 3.53$, $g_y = 6.79$, $g_z = 11.18$), and its main magnetic axis is roughly orthogonal to that of the ground state (84.1° deviation). Thus, \textit{ab initio} calculations predict relaxation via the Orbach process to occur through the third excited state, which is in excellent agreement with the experimental U_{eff}.

The U_{eff} and electronic structure of 2Dy can be compared to the theoretical models of [Dy(R)$_2$(THF)$_4$]$^+$ (R = N(SiH$_3$)$_2$, CH(SiH$_3$)$_2$, C(SiH$_3$)$_3$), which were computed in a study examining the effects of linearity on U_{eff} and the effects of coordinated solvent and complex geometry.\cite{5b} Pseudo-D_{4h} symmetry was predicted to have a U_{eff} barrier of ~ 1000 K for R = (H$_3$Si)$_2$N$^-$ and (H$_3$Si)$_2$(H)C$^-$, and 1600 K when R = (H$_3$Si)$_2$C$^-$.

Relaxation of the magnetisation occurs via the third excited state for 2Dy as well as the [Dy(OBu)$_3$]$_2$(Py-4-R)$_4$$^+$ series, but the latter can have larger U_{eff} values; it is clear that shorter axial Dy–O distances ($\sim 2.066(8)$–2.122(5) Å) linearly expand the energy range of the excited m_J state manifold,\cite{16} but equatorial ligand coordination is still important. So, we compared the computed charges for the [Dy(OBu)$_3$]$_2$(Py-4-R)$_4$$^+$ series and 2Dy; we find that the Dy, O, and N calculated LoProp charges for the former are 2.47 to 2.50, -1.09 to -1.12, and -0.39 to -0.40, and for 2Dy the Dy, O$_{\text{Boryl}}$, and O$_{\text{THF}}$ LoProp charges are 2.57, -1.02, and -0.56, respectively. These data suggest that the Dy atom in 2Dy is more positively charged as a result of less charge donation from the ligands overall, but the boryloxide ligands are weaker donors than the alkoxides and the THF ligands are stronger donors than the pyridine ligands resulting in a weaker axial and greater equatorial ligand field for 2Dy compared to the [Dy(OBu)$_3$]$_2$(Py-4-R)$_4$$^+$ series, which is in line with the theoretical models.
observed U_{eff} data. Thus, whilst bond distances are a useful gross guide to likely magnetic performance, the potential donor strength of individual ligands is also a key factor within a range of effectiveness bracketed by the gross Dy–ligand distances.

To conclude, we have reported the synthesis of rare examples of Ln–boryloxide complexes utilising a borohydride elimination methodology. Complex 2Dy is a D_{3h}@Dy(III) SMM with a large U_{eff} barrier likely surpassed by only one other D_{3h}@Dy(III) SMM. These results validate the electrostatic model, but also clarify an appreciation that charges and thus donor strength of ligands is an important criterion for SMM performance within the framework of Dy–ligand distances.

We thank the EPSRC (EP/P002560/1, EP/P001386/1, EP/P00270 15/1), ERC (CoG612724, StG851504), Royal Society (University Research Fellowship to NFC), German DFG (SL104/10-1), and The Universities of Manchester and Stuttgart for support.

Conflicts of interest
There are no conflicts to declare.

Notes and references
6 A list of six-coordinate Dy(III) SMMs is located in the ESI†.
17 See the ESI† for full details.