Issue 23, 2014

Self-healing gels based on constitutional dynamic chemistry and their potential applications

Abstract

As representative soft materials with widespread applications, gels with various functions have been developed. However, traditional gels are vulnerable to stress-induced formation of cracks. The propagation of these cracks may affect the integrity of network structures of gels, resulting in the loss of functionality and limiting the service life of the gels. To address this challenge, self-healing gels that can restore their functionalities and structures after damage have been developed as “smart” soft materials. In this paper, we present an overview of the current strategies for synthesizing self-healing gels based on the concept of constitutional dynamic chemistry, which involves molecular structures capable of establishing dynamic networks based upon physical interactions or chemical reactions. The characterization methods of self-healing gels and the key factors that affect self-healing properties are analyzed. We also illustrate the emerging applications of self-healing gels, with emphasis on their usage in industry (coatings, sealants) and biomedicine (tissue adhesives, agents for drug or cell delivery). We conclude with a perspective on challenges facing the field, along with prospects for future development.

Graphical abstract: Self-healing gels based on constitutional dynamic chemistry and their potential applications

Article information

Article type
Review Article
Submitted
29 Jun 2014
First published
21 Aug 2014

Chem. Soc. Rev., 2014,43, 8114-8131

Author version available

Self-healing gels based on constitutional dynamic chemistry and their potential applications

Z. Wei, J. H. Yang, J. Zhou, F. Xu, M. Zrínyi, P. H. Dussault, Y. Osada and Y. M. Chen, Chem. Soc. Rev., 2014, 43, 8114 DOI: 10.1039/C4CS00219A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements