Innovative recycling strategies for non-recycled plastics: advancing the circular economy for a sustainable future
Abstract
Plastic waste presents a critical environmental challenge, with reports of global production surpassing 390 million tons annually and an effective recycling rate of less than 10%. This study investigates advanced recycling methodologies aimed at mitigating plastic waste and promoting a circular economy. Mechanical, chemical, and emerging advanced recycling technologies are evaluated based on efficiency, scalability, and environmental impact. Mechanical recycling achieves material recovery rates up to 60%, accompanied by a 30% reduction in greenhouse gas emissions compared to virgin plastic production; however, polymer contamination and degradation restrict its long-term effectiveness. Chemical recycling processes, including microwave-assisted pyrolysis and enzymatic plastic depolymerization, demonstrate recovery efficiencies exceeding 90%, producing high-quality feedstocks suitable for industrial reuse. Life-cycle assessments reveal that chemical recycling can reduce environmental footprints by approximately 45% relative to conventional disposal practices. Advanced recycling technologies, such as enzymatic and catalytic hydrocracking, blockchain-enabled plastic waste tracking, and bioplastic waste valorization conversion, exhibit conversion efficiencies ranging from 85 to 95%, though scalability remains limited by economic and technological constraints. Integration with digital innovations, such as AI-enabled waste sorting and blockchain-based supply chain transparency, enhances material recovery rates by up to 20%. Policy instruments, notably extended producer responsibility (EPR) schemes and consumer engagement initiatives, further reinforce recycling outcomes. Case studies from Europe and Asia demonstrate landfill diversion rates reaching 75%, underscoring the effectiveness of integrated approaches. The analysis highlights the urgent necessity for multifaceted recycling strategies to curb the escalating plastic waste crisis and facilitate a transition toward a sustainable circular economy. Through the strategic application of technological advancements and policy interventions, it is feasible to achieve a 50% reduction in global plastic waste by 2030, thereby contributing significantly to environmental protection and resource conservation, while mitigating climate change impacts.
- This article is part of the themed collection: RSC Sustainability Recent Review Articles

Please wait while we load your content...