Issue 48, 2025

Transient interactions and local heterogeneity drive rotational–translational decoupling of nanorods in semidilute mucin solutions

Abstract

We investigated the rotational and translational dynamics of gold nanorods in semidilute solutions of bovine submaxillary mucin (BSM), a biologically relevant bottlebrush polymer rich in MUC5B. Using fluctuation correlation spectroscopy (FCS), we observe that both translational and rotational motions exhibit anomalous subdiffusion, with the corresponding exponents decreasing systematically with mucin concentration. Mean-square displacement (MSD) analysis reveals a clear crossover from short-time subdiffusion to long-time normal diffusion at low mucin levels, while persistent subdiffusion dominates at higher concentrations. Translational diffusion coefficients show only weak dependence on polymer volume fraction, whereas rotational mobility is markedly constrained, particularly at elevated mucin volume fractions. These results cannot be fully explained by conventional hydrodynamic or obstruction-based theories. Instead, we attribute the observed decoupling between translation and rotation to transient interactions between nanorods and mucin chains, combined with spatial heterogeneity in local polymer density and segmental dynamics. Our findings demonstrate how anisotropic probes can sensitively capture multiscale viscoelastic and structural features of complex biological polymer solutions.

Graphical abstract: Transient interactions and local heterogeneity drive rotational–translational decoupling of nanorods in semidilute mucin solutions

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
21 Jul 2025
Accepted
17 Sep 2025
First published
18 Sep 2025
This article is Open Access
Creative Commons BY-NC license

Soft Matter, 2025,21, 9203-9212

Transient interactions and local heterogeneity drive rotational–translational decoupling of nanorods in semidilute mucin solutions

M. M. B. Baynosa and A. Mukhopadhyay, Soft Matter, 2025, 21, 9203 DOI: 10.1039/D5SM00742A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements