Regioselective late-stage functionalization of tetraphenylenes: rapid construction of double helical architectures and potential hole transport materials†‡
Abstract
Herein we report a novel approach for diversification of tetraphenylene via regioselective late-stage iodination followed by atom(s) insertion into the resulting cyclic iodonium salts. Thus, the steric hindrance effect of tert-butyl facilitates the regioselective synthesis of two cyclic iodonium salts of 2,7,10,15-tetra-tert-butyltetraphenylene. In addition, two more cyclic iodonium salts of 2,7,10,15-tetranitrotetraphenylene were also readily synthesized due to the meta-position induced effect of the electron-withdrawing NO2 group. Subsequent functionalization of these tetraphenylene-based cyclic iodonium salts via diverse atom(s) insertion processes led to several tetraphenylene-based [8 + n] and [n + 8 + n] fused rings including fascinating double helical architectures. This newly developed late-stage functionalization methodology was also successfully applied to rapid synthesis of potential hole transport materials, thereby demonstrating its robust synthetic value in both tetraphenylene chemistry and materials science.

Please wait while we load your content...