Issue 10, 2025

Catalytic enantioselective synthesis of α-C chiral sulfones enabled by merging photoactive electron donor–acceptor complexes with nickel catalysis

Abstract

α-C chiral sulfones are privileged building blocks widely found in pharmaceuticals, agrochemicals, natural products, and ligands. Although many nucleophilic or electrophilic protocols have been developed for their construction, radical-based asymmetric catalysis, especially that involving photoactive electron donor–acceptor (EDA) complexes, remains a significant unmet challenge. Herein, we present the first catalytic asymmetric production of α-C chiral sulfones enabled by merging a photoactive EDA complex with a chiral Ni catalyst. With this cooperative asymmetric catalysis system, a wide range of α-C chiral sulfones are achieved in good yields with excellent enantioselectivities (53 examples, up to 99% yield, 99 : 1 er). The synthetic utility of this protocol is further demonstrated by the first asymmetric synthesis of the selective MMP-3 (stromelysin-1) inhibitor. Detailed mechanistic and spectroscopic studies suggest that a newly identified type of EDA complex generated from sulfonyl chlorides and Hantzsch esters (HEs) is crucial to the success as a precursor of sulfonyl radicals.

Graphical abstract: Catalytic enantioselective synthesis of α-C chiral sulfones enabled by merging photoactive electron donor–acceptor complexes with nickel catalysis

Supplementary files

Article information

Article type
Edge Article
Submitted
26 Oct 2024
Accepted
19 Jan 2025
First published
23 Jan 2025
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY-NC license

Chem. Sci., 2025,16, 4352-4359

Catalytic enantioselective synthesis of α-C chiral sulfones enabled by merging photoactive electron donor–acceptor complexes with nickel catalysis

Z. Lai, Y. Xie, L. Huang, J. Guo and G. Lu, Chem. Sci., 2025, 16, 4352 DOI: 10.1039/D4SC07264B

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements