Temperature-controlled surface adhesion in graphene materials: experimental trends, surfaces, and interfaces physical chemistry
Abstract
Understanding the role of temperature in modulating surface adhesion properties of graphene and its derivatives is essential for their effective integration in nano- and optoelectronic devices. In this study, the temperature-dependent dispersive and polar components of work of adhesion was systematically investigated across graphene (G), reduced graphene oxide (rGO), and graphene oxide (GO), using inverse gas chromatography (IGC) and selected polar/nonpolar solvent interactions. Our results reveal a consistent hierarchy in adhesion energies (G > rGO > GO) and show that elevated temperatures significantly influence interfacial interactions by modifying surface energy components. Furthermore, the solvent-specific trends suggest a strong interplay between molecular polarity and surface functionalization. This study not only provides thermodynamic insights into graphene-based adhesion but also contributes to rational interface engineering in 2D materials under thermal fluctuation.