Issue 21, 2024

Elucidating the local structure of Li1+xAlxTi2−x(PO4)3 and Li3AlxTi2−x(PO4)3 (x = 0, 0.3) via total scattering

Abstract

Li1+xAlxTi2−x(PO4)3 (LATP) and Li3AlxTi2−x(PO4)3 (x = 0, 0.3) are promising candidates in all-solid-state batteries due to their high room temperature conductivity of 10−3 S cm−1 and air- and moisture-stability. They also exhibit unusual thermal expansion properties, with Li1+xAlxTi2−x(PO4)3 showing near-zero thermal expansion along the a axis while Li3AlxTi2−x(PO4)3 exhibits polynomial positive thermal expansion along the a axis and polynomial negative thermal expansion along the c axis. A crucial component to understanding these properties is understanding the local structure. Total scattering is a powerful analytical technique as it provides information on the long-range, average structure as well as the local structure. Here, we report the first X-ray and neutron total scattering experiments performed on Li1+xAlxTi2−x(PO4)3 and Li3AlxTi2−x(PO4)3 (x = 0, 0.3). We show that the PO4 and TiO6 polyhedra experience very little expansion of the P/Ti–O bonds up to 800 °C, nor is there much expansion when the Li content increases significantly. The minor thermal expansion of the nearest-neighbor bonds of the polyhedra is revealed to be the reason behind the unusual thermal expansion properties, causing the near-zero thermal expansion along a in Li1+xAlxTi2−x(PO4)3 and moving as whole units in Li3AlxTi2−x(PO4)3. The structural robustness of the framework is also the reason for the increased conductivity as Li content increases, as the framework remains undistorted as Li content increases, permitting Li-ion mobility as the number of charge carriers increases. This suggests that phosphate-based framework materials beyond LATP would also be a good material space to explore for new Li-ion (and other ion-) conducting materials.

Graphical abstract: Elucidating the local structure of Li1+xAlxTi2−x(PO4)3 and Li3AlxTi2−x(PO4)3 (x = 0, 0.3) via total scattering

Supplementary files

Article information

Article type
Research Article
Submitted
18 Jun 2024
Accepted
24 Sep 2024
First published
27 Sep 2024

Inorg. Chem. Front., 2024,11, 7648-7666

Elucidating the local structure of Li1+xAlxTi2−x(PO4)3 and Li3AlxTi2−x(PO4)3 (x = 0, 0.3) via total scattering

M. S. Chambers, J. Liu, O. J. Borkiewicz, K. Llopart, R. L. Sacci and G. M. Veith, Inorg. Chem. Front., 2024, 11, 7648 DOI: 10.1039/D4QI01545B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements