Issue 6, 2023

Magnetically agitated continuous-flow tube reactors with aspartate ammonia-lyase immobilized on magnetic nanoparticles

Abstract

Two magnetically agitated continuous-flow tube reactors (AFRs)—applying external permanent magnets to move magnetic nanoparticles coated with a biocatalyst within a stream of the reaction medium—were developed and studied with aspartate ammonia-lyase (AAL) from Pseudomonas fluorescens immobilized onto epoxy-functionalized magnetic nanoparticles (MNPs) by covalent binding. The biotransformation of L-aspartate to fumarate by the AAL-MNPs (5 mg, D = 420 nm, 6 μg g−1 AAL) took place in the reaction tube (PTFE, ID 2.15 mm) of both AFRs in a space containing the AAL-MNPs agitated within the flow of the reaction medium (0.5 mM L-aspartate solution, 4.7–14 μL min−1, 25 °C) by two permanent ring magnets (N48 neodymium, 10 × 5 × 5 mm) positioned at a fixed distance in attraction mode. In the first version (AFRXM), the two magnets positioned at opposite sides of the reaction tube (distance: 20 mm) performed axial movement (amplitude: 8 mm, frequency: 40–140 mpm) along the Y-axis, being perpendicular to the X-axis of the tube. In the second version (AFRRM), the two magnets (distance: 10 mm from each other, 5 mm from the X-axis) performed rotation movement (frequency: 40–140 rpm) around the X-axis. Whereas in the AFRXM the AAL-MNPs formed a cloud moving back and forth, they created a ring-shaped cloud rotating within the tube in the AFRRM. The efficient internal mixing in the AFRRM at the best frequency (80 rpm) resulted in the highest apparent specific activity (Ub = 354–469 U g−1, at residence times of 2.5–7.5 min) of the AAL-MNPs in the reactors studied. In the other continuous-flow systems, significantly lower Ub values were achieved (135–290 U g−1 at 120 mpm in AFRXM; or 142–273 U g−1 and 64–129 U g−1 in tubular reactors anchoring MNPs in static mode with double or single magnets, respectively), whereas more than a magnitude of order lower values could be realised in the batch mode reactors (11.4–14.9 U g−1 with rotational magnetic agitation at 120 rpm; 5.0–5.8 U g−1 with axial magnetic agitation at 160 mpm; or 4.6–5.2 U g−1 in an orbital shaker at 600 rpm) at comparable reaction times (2.5–7.5 min).

Graphical abstract: Magnetically agitated continuous-flow tube reactors with aspartate ammonia-lyase immobilized on magnetic nanoparticles

Supplementary files

Article information

Article type
Paper
Submitted
18 Nov 2022
Accepted
25 Dec 2022
First published
25 Jan 2023

React. Chem. Eng., 2023,8, 1250-1259

Magnetically agitated continuous-flow tube reactors with aspartate ammonia-lyase immobilized on magnetic nanoparticles

A. O. Imarah, F. M. W. G. Silva, N. Bataa, B. Decsi, D. Balogh-Weiser and L. Poppe, React. Chem. Eng., 2023, 8, 1250 DOI: 10.1039/D2RE00507G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements