Issue 10, 2023

Green steel: design and cost analysis of hydrogen-based direct iron reduction

Abstract

Hydrogen-based direct reduced iron (H2-DRI) is an alternative pathway for low-carbon steel production. Yet, the lack of established process and business models defining “green steel” makes it difficult to understand what the respective H2 price has to be in order to be competitive with commercial state-of-the-art natural gas DRI. Given the importance of establishing break-even H2 prices and CO2 emission reduction potentials of H2-DRI, this study conducted techno-economic analyses of several design and operation scenarios for DRI systems. Results show that renewable H2 use in integrated DRI steel mills for both heating and the reduction of iron ore can reduce direct CO2 emissions by as much as 85%, but would require an H2 procurement cost of $1.63 per kg H2 or less. When using H2 only for iron ore reduction, economic viability is reached at an H2 procurement cost of $1.70 per kg, while achieving a CO2 emission reduction of 76% at the plant site. System design optimization strategies around excess H2 ratios in the DRI top gas and the H2 recycle pressurization can further improve performance and economics. Low H2 excess ratios are particularly attractive as they reduce pre-heating energy requirements and offer integration opportunities with static recycle ejectors if H2 is supplied at sufficiently high pressure. The potential of utilizing the electric arc furnace off-gas is shown to be much more synergistic with H2-DRI than natural gas-DRI and can increase the break-even H2 procurement cost by up to 7¢ per kg H2. Such findings are critical for setting technical performance criteria for H2 supply and storage in the iron and steel sector.

Graphical abstract: Green steel: design and cost analysis of hydrogen-based direct iron reduction

Supplementary files

Article information

Article type
Analysis
Submitted
04 Apr 2023
Accepted
17 Aug 2023
First published
21 Aug 2023
This article is Open Access
Creative Commons BY-NC license

Energy Environ. Sci., 2023,16, 4121-4134

Green steel: design and cost analysis of hydrogen-based direct iron reduction

F. Rosner, D. Papadias, K. Brooks, K. Yoro, R. Ahluwalia, T. Autrey and H. Breunig, Energy Environ. Sci., 2023, 16, 4121 DOI: 10.1039/D3EE01077E

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements