Issue 2, 2023

Magnetic field effects on radical pair reactions: estimation of B1/2 for flavin-tryptophan radical pairs in cryptochromes

Abstract

Magnetic field effects on the yields of radical pair reactions are often characterised by the “half-field” parameter, B1/2, which encodes useful information on spin relaxation, radical recombination kinetics and electron-electron couplings as well as electron–nuclear hyperfine interactions. Here we use a variety of spin dynamics simulation methods to estimate the hyperfine-only values of B1/2 for the flavin-tryptophan radical pair, [FAD˙ TrpH˙+], thought to be the detector in the magnetic compass sense of migratory songbirds. The main findings are: (a) in the absence of fast recombination and spin relaxation, [FAD˙ TrpH˙+] radical pairs in solution and in the putative magnetoreceptor protein, cryptochrome, have B1/2 ≈ 1.89 mT and 2.46 mT, respectively. (b) The widely used expression for B1/2 due to Weller et al. (Chem. Phys. Lett, 1983, 96, 24–27) is only applicable to small, short-lived (∼5 ns), rapidly tumbling radical pairs in solution, and is quantitatively unreliable in the context of magnetoreception. (c) In the absence of molecular tumbling, the low-field effect for [FAD˙ TrpH˙+] is predicted to be abolished by the anisotropic components of the hyperfine interactions. Armed with the 2.46 mT “base value” for cryptochrome, measurements of B1/2 can be used to understand the impact of spin relaxation on its performance as a magnetic compass sensor.

Graphical abstract: Magnetic field effects on radical pair reactions: estimation of B1/2 for flavin-tryptophan radical pairs in cryptochromes

Supplementary files

Article information

Article type
Paper
Submitted
17 Aug 2022
Accepted
04 Dec 2022
First published
07 Dec 2022
This article is Open Access
Creative Commons BY-NC license

Phys. Chem. Chem. Phys., 2023,25, 975-982

Magnetic field effects on radical pair reactions: estimation of B1/2 for flavin-tryptophan radical pairs in cryptochromes

S. Y. Wong, P. Benjamin and P. J. Hore, Phys. Chem. Chem. Phys., 2023, 25, 975 DOI: 10.1039/D2CP03793A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements