Issue 20, 2022

Tuning the local chemical environment of ZnSe quantum dots with dithiols towards photocatalytic CO2 reduction

Abstract

Sunlight-driven CO2 reduction to renewable fuels is a promising strategy towards a closed carbon cycle in a circular economy. For that purpose, colloidal quantum dots (QDs) have emerged as a versatile light absorber platform that offers many possibilities for surface modification strategies. Considerable attention has been focused on tailoring the local chemical environment of the catalytic site for CO2 reduction with chemical functionalities ranging from amino acids to amines, imidazolium, pyridines, and others. Here we show that dithiols, a class of organic compounds previously unexplored in the context of CO2 reduction, can enhance photocatalytic CO2 reduction on ZnSe QDs. A short dithiol (1,2-ethanedithiol) activates the QD surface for CO2 reduction accompanied by a suppression of the competing H2 evolution reaction. In contrast, in the presence of an immobilized Ni(cyclam) co-catalyst, a longer dithiol (1,6-hexanedithiol) accelerates CO2 reduction. 1H-NMR spectroscopy studies of the dithiol-QD surface interactions reveal a strong affinity of the dithiols for the QD surface accompanied by a solvation sphere governed by hydrophobic interactions. Control experiments with a series of dithiol analogues (monothiol, mercaptoalcohol) render the hydrophobic chemical environment unlikely as the sole contribution of the enhancement of CO2 reduction. Density functional theory (DFT) calculations provide a framework to rationalize the observed dithiol length dependent activity through the analysis of the non-covalent interactions between the dangling thiol moiety and the CO2 reduction intermediates at the catalytic site. This work therefore introduces dithiol capping ligands as a straightforward means to enhance CO2 reduction catalysis on both bare and co-catalyst modified QDs by engineering the particle's chemical environment.

Graphical abstract: Tuning the local chemical environment of ZnSe quantum dots with dithiols towards photocatalytic CO2 reduction

Supplementary files

Article information

Article type
Edge Article
Submitted
11 Feb 2022
Accepted
11 Apr 2022
First published
11 Apr 2022
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY license

Chem. Sci., 2022,13, 5988-5998

Tuning the local chemical environment of ZnSe quantum dots with dithiols towards photocatalytic CO2 reduction

C. D. Sahm, A. Ciotti, E. Mates-Torres, V. Badiani, K. Sokołowski, G. Neri, A. J. Cowan, M. García-Melchor and E. Reisner, Chem. Sci., 2022, 13, 5988 DOI: 10.1039/D2SC00890D

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements