In situ construction of a Te/CsPbBr3 heterojunction for self-powered photodetector
Abstract
In this study, CsPbBr3 particles were prepared by a simple solvent evaporation method in ambient environment; the p–n heterojunction formed by CsPbBr3 particles on the surface of a single long Te wire was used to construct a high-performance Te/CsPbBr3 photodetector. Compared with CsPbBr3 PDs, the Te/CsPbBr3 photodetector showed improved photocurrent, and exhibited characteristics of excellent self-powered performance, broad-spectrum response (UV-visible), and ultra-fast response speed (trise = 0.09 ms). In addition, under zero bias and upon 540 nm light irradiation, the device had good responsivity (0.35 mA W−1), high photosensitivity (up to 100 on/off ratio), and a detectivity of 1.42 × 1010 Jones. This study provides insight into the possibility of manufacturing high-performance self-powered photodetectors through a simple in situ construction of heterojunctions.