Issue 22, 2022

Ambient-pressure ozone treatment enables tuning of oxygen vacancy concentration in the La1−xSrxFeO3−δ (0 ≤ x ≤ 1) perovskite oxides

Abstract

Oxygen vacancies in metal oxides can determine their properties. However, it is difficult to reduce the oxygen vacancy concentration in metal oxides without annealing them under high pressure. In this work, we develop a facile approach to control oxygen vacancy content via an ozone treatment under ambient pressure during cooling. This approach is demonstrated for the synthesis of La1−xSrxFeO3−δ (0 ≤ x ≤ 1, 0 ≤ δ ≤ 0.5x) perovskite oxides – an important class of energy-related materials due to their wide range of non-stoichiometry, mixed ionic and electronic conductivity, and the presence of a rare Fe(IV) oxidation state. A series of La1−xSrxFeO3−δ compounds was initially synthesized using a polymerized complex method. The concentration of oxygen vacancies and Fe(IV) were determined by redox titration, and the crystal structures were derived by analyzing X-ray diffraction patterns using Rietveld refinement. Significant amounts of oxygen vacancies were found in the as-synthesized compounds with x ≥ 0.8: La0.2Sr0.8FeO3−δ (δ = 0.066) and SrFeO3−δ (δ = 0.195). The ambient-pressure ozone treatment approach was able to substantially reduce the amount of oxygen vacancies in these compounds to achieve levels near the oxygen stoichiometry of 3 for La0.2Sr0.8FeO3−δ (δ = 0.006) and SrFeO3−δ (δ = 0.021). The oxygenation/deoxygenation kinetics can be tuned by the cooling rate after annealing. As the oxygen vacancy concentration decreases, the structure of SrFeO3−δ evolves from orthorhombic to cubic, demonstrating that the crystal structures in metal oxides can be highly sensitive to the number of oxygen vacancies. The ozone treatment approach developed in this study may thus offer a robust means to tune the properties of a wide variety of metal oxides.

Graphical abstract: Ambient-pressure ozone treatment enables tuning of oxygen vacancy concentration in the La1−xSrxFeO3−δ (0 ≤ x ≤ 1) perovskite oxides

Supplementary files

Article information

Article type
Paper
Submitted
28 May 2022
Accepted
05 Sep 2022
First published
08 Sep 2022
This article is Open Access
Creative Commons BY-NC license

Mater. Adv., 2022,3, 8229-8240

Ambient-pressure ozone treatment enables tuning of oxygen vacancy concentration in the La1−xSrxFeO3−δ (0 ≤ x ≤ 1) perovskite oxides

G. Qing, D. Thompson, M. Benamara, C. Heske, L. Greenlee and J. Chen, Mater. Adv., 2022, 3, 8229 DOI: 10.1039/D2MA00604A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements