Issue 5, 2022

Do molecular dynamics force fields accurately model Ramachandran distributions of amino acid residues in water?

Abstract

Molecular dynamics (MD) is a powerful tool for studying intrinsically disordered proteins, however, its reliability depends on the accuracy of the force field. We assess Amber ff19SB, Amber ff14SB, OPLS-AA/M, and CHARMM36m with respect to their capacity to capture intrinsic conformational dynamics of 14 guest residues x (=G, A, L, V, I, F, Y, DP, EP, R, C, N, S, T) in GxG peptides in water. The MD-derived Ramachandran distribution of each guest residue is used to calculate 5 J-coupling constants and amide I′ band profiles to facilitate a comparison to spectroscopic data through reduced χ2 functions. We show that the Gaussian model, optimized to best fit the experimental data, outperforms all MD force fields by an order of magnitude. The weaknesses of the MD force fields are: (i) insufficient variability of the polyproline II (pPII) population among the guest residues; (ii) oversampling of antiparallel at the expense of transitional β-strand region; (iii) inadequate sampling of turn-forming conformations for ionizable and polar residues; and (iv) insufficient guest residue-specificity of the Ramachandran distributions. Whereas Amber ff19SB performs worse than the other three force fields with respect to χ2 values, it accounts for residue-specific pPII content better than the other three force fields. Additional testing of residue-specific RSFF1 and Amber ff14SB combined with TIP4P/2005 on six guest residues x (=A, I, F, DP, R, S) reveals that residue specificity derived from protein coil libraries or an improved water model alone do not result in significantly lower χ2 values.

Graphical abstract: Do molecular dynamics force fields accurately model Ramachandran distributions of amino acid residues in water?

Supplementary files

Article information

Article type
Paper
Submitted
05 Nov 2021
Accepted
05 Jan 2022
First published
06 Jan 2022

Phys. Chem. Chem. Phys., 2022,24, 3259-3279

Author version available

Do molecular dynamics force fields accurately model Ramachandran distributions of amino acid residues in water?

B. Andrews, J. Guerra, R. Schweitzer-Stenner and B. Urbanc, Phys. Chem. Chem. Phys., 2022, 24, 3259 DOI: 10.1039/D1CP05069A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements