Issue 14, 2022

Single- and double-bridged PNP ligands in chromium-catalysed ethylene oligomerisation

Abstract

Several PNP-type diphosphine ligands have been synthesised and characterised, featuring a single or a double N-bridge between the P-donor atoms. PNP ligands 1 and 2 containing diazaphospholane donors have been prepared and reaction with [CrCl3(thf)3] results in coordination in a bidentate fashion to give dinuclear complexes [(1)CrCl3]2 and [(2)CrCl3]2 which have been characterised by scXRD analysis. In situ prepared catalysts using ligands 1 and 2 provide good activities and selectivities for the tri- and tetramerisation of ethylene reaching 35% 1-hexene and 61% 1-octene at 5400 g g−1 per Cr per h in the case of 1, and 42% 1-hexene and 55% 1-octene at 17 000 g g−1 (Cr) h−1 in the case of 2, comparable to standard iPrN(PPh2)2-type ligands under similar conditions. Chromium-catalysed ethylene oligomerisations with a doubly N-bridged cyclodiphosphazane ligand (4) result in a Schulz–Flory distribution of α-olefins with relatively low α values of 0.42 and 0.52. Computational studies using DFT on mononuclear chromium complexes of ligands 1 and 2 have shown that the binding of ethylene is favoured in these complexes compared to the benchmark PNP ligand iPrN(PPh2)2 and that the oligomerisation mechanism involves both single and double ethylene insertions.

Graphical abstract: Single- and double-bridged PNP ligands in chromium-catalysed ethylene oligomerisation

Supplementary files

Article information

Article type
Paper
Submitted
22 Mar 2022
Accepted
30 May 2022
First published
31 May 2022
This article is Open Access
Creative Commons BY-NC license

Catal. Sci. Technol., 2022,12, 4544-4551

Single- and double-bridged PNP ligands in chromium-catalysed ethylene oligomerisation

Q. Lo, D. Pye, S. Gesslbauer, Y. Sim, F. García, A. J. P. White and G. J. P. Britovsek, Catal. Sci. Technol., 2022, 12, 4544 DOI: 10.1039/D2CY00550F

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements