Issue 26, 2021, Issue in Progress

A sensitive and selective BINOL based ratiometric fluorescence sensor for the detection of cyanide ions

Abstract

A highly selective, novel BINOL based sensor BBCN has been developed for the fluorescent ratiometric detection of cyanide ions (CN). The optical study revealed that BBCN exhibited unique spectral changes only with cyanide ions in the presence of other competing ions. Besides, an apparent fluorescent colour change from green to blue was observed. A clear linear relationship was observed between the fluorescence ratiometric ratio of BBCN and the concentration of CN with a reasonably low detection limit (LOD) of 189 nM (507 ppb). The optical response was due to the nucleophilic addition of CN to the dicyanovinyl group of the sensor, which compromises the probe's intramolecular charge transfer. This mechanism was well confirmed by Job's plot, 1H-NMR and ESI-MS studies. BBCN showed immediate spectral response towards (1 second) CN and detection could be realized in a broad pH window. Furthermore, the practical utility of BBCN was studied by test paper-based analysis and the detection of CN in various water resources.

Graphical abstract: A sensitive and selective BINOL based ratiometric fluorescence sensor for the detection of cyanide ions

Supplementary files

Article information

Article type
Paper
Submitted
14 Feb 2021
Accepted
20 Apr 2021
First published
27 Apr 2021
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2021,11, 15656-15662

A sensitive and selective BINOL based ratiometric fluorescence sensor for the detection of cyanide ions

S. Munusamy, S. Swaminathan, D. Jothi, V. P. Muralidharan and S. K. Iyer, RSC Adv., 2021, 11, 15656 DOI: 10.1039/D1RA01213D

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements