Electrochemical investigation of structurally varied azinium scaffolds†
Abstract
Inspired by the successful utilization of aziniums as anolytes in redox-flow batteries, we have designed and prepared a systematically extended series of (di)azinium compounds based on pyrazine, bipyridine, 1,5-naphthyridine, 3,8-phenanthroline, (E)-4,4′-diazastilbene and 1,2-bis(pyridin-4-yl)acetylene. It has been revealed that the fundamental electrochemical properties are affected mostly by the water-solubility and chemical stability of the particular redox forms. Based on the systematically evolved azinium structure and gathered electrochemical data, structure–property relationships were thoroughly elucidated. Further investigation on flow battery cells identified that the known 4,4′-bipyridinium decorated with two peripheral N-propyl-3-sulfonato pendants allows utilizing both redox steps with good cycling stability, while the naphthyridine scaffold turned out to be a new and promising scaffold for redox-flow batteries.