Jump to main content
Jump to site search

Issue 2, 2021
Previous Article Next Article

Peptide-based nanomaterials for gene therapy

Author affiliations

Abstract

Gene therapy is a novel therapeutic method and widely used for treating numerous diseases. However, the utilization of suitable materials for specifically and effectively delivering therapeutic oligonucleotides (ODNs) into a targeted site remains a great challenge. Regarding this, by possessing the capabilities of high loading rate, good stability, targeting ability and biological barrier penetration, peptide-based nanomaterials are developing rapidly and becoming a new trend in the application of gene therapy. In this review, a variety of peptide-based nanomaterials designed for gene therapy are briefly demonstrated, focusing on their main constituents in terms of three aspects: (1) small molecules, (2) nanoparticles and (3) polymers. Using peptide-based nanomaterials, a controlled gene delivery process can be achieved and directly monitored in a real-time mode. In future work, different designs of peptide-based nanomaterials need to be explored for higher gene transfection efficiency and a better therapeutic effect. In the end, some challenges and deficiencies are mentioned for bringing more attention to accelerate the research of peptide-based nanomaterials.

Graphical abstract: Peptide-based nanomaterials for gene therapy

Back to tab navigation

Article information


Submitted
27 Oct 2020
Accepted
07 Dec 2020
First published
08 Dec 2020

This article is Open Access

Nanoscale Adv., 2021,3, 302-310
Article type
Minireview

Peptide-based nanomaterials for gene therapy

W. Zhang, Q. Chen, F. Wu, J. Dai, D. Ding, J. Wu, X. Lou and F. Xia, Nanoscale Adv., 2021, 3, 302
DOI: 10.1039/D0NA00899K

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material and it is not used for commercial purposes.

Reproduced material should be attributed as follows:

  • For reproduction of material from NJC:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
  • For reproduction of material from PCCP:
    [Original citation] - Published by the PCCP Owner Societies.
  • For reproduction of material from PPS:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
  • For reproduction of material from all other RSC journals:
    [Original citation] - Published by The Royal Society of Chemistry.

Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.


Social activity

Search articles by author

Spotlight

Advertisements