Issue 24, 2021

Vacancy diffusion in palladium hydrides

Abstract

The self-diffusion coefficients of palladium in PdHx (x = 0, 0.25, 0.5, 0.75, 1) were studied using density functional theory to obtain the required thermodynamic and kinetic parameters. The enthalpy of migration decreased from 0.95 eV for Pd to 0.78 eV for PdH. The enthalpy of vacancy formation exhibited a substantial decrease from about 1.1 eV in Pd to 0.4 eV in PdH, which was ascribed to successive filling of antibonding states weakening the Pd–Pd bonds. Concurrently, the Arrhenius pre-exponential was significantly reduced from 4.75 × 10−3 cm2 s−1 for Pd to 5.67 × 10−9 cm2 s−1 for PdH due to softening of the vibrational modes that determine the entropy of vacancy formation and initial/transition state frequencies. A linear correlation between the logarithm of the pre-exponential and the activation energy was interpreted as enthalpy–entropy compensation (Meyer–Neldel rule). The Pd self-diffusion coefficients in the hydrides were within 1 order of magnitude of that in pure palladium above 200 °C for hydrogen pressures up to at least 107 Pa.

Graphical abstract: Vacancy diffusion in palladium hydrides

Supplementary files

Article information

Article type
Paper
Submitted
03 May 2021
Accepted
04 Jun 2021
First published
04 Jun 2021
This article is Open Access
Creative Commons BY-NC license

Phys. Chem. Chem. Phys., 2021,23, 13680-13686

Vacancy diffusion in palladium hydrides

J. M. Polfus, T. Peters, R. Bredesen and O. M. Løvvik, Phys. Chem. Chem. Phys., 2021, 23, 13680 DOI: 10.1039/D1CP01960K

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements