Issue 3, 2021

Electroenzymatic choline sensing at near the theoretical performance limit

Abstract

A high performance, electroenzymatic microsensor for choline based on choline oxidase (ChOx) immobilized on Pt coated with permselective polymer layers has been created that exhibits sensitivity approaching the theoretical performance limit. Sensor construction was guided by simulations performed with a detailed mathematical model. Implantable microsensors with an array of electroenzymatic sensing sites provide a means to record concentration changes of choline, an effective surrogate for acetylcholine due to its very rapid turnover in the brain, and other neurochemicals in vivo. However, electroenzymatic sensors generally have insufficient sensitivity and response time to monitor neurotransmitter signaling on the millisecond timescale with cellular-level spatial resolution. Model simulations suggested that choline sensor performance can be improved significantly by optimizing immobilized ChOx layer thickness and minimizing the thicknesses of permselective polymer coatings as well. Electroenzymatic choline sensors constructed with a ∼5 μm-thick crosslinked ChOx layer atop 200 nm-thick permselective films (poly(m-phenylenediamine) and Nafion) exhibited unprecedented sensitivity and response time of 660 ± 40 nA μM−1 cm−2 at 37 °C and 0.36 ± 0.05 s, respectively, while maintaining excellent selectivity. Such performance characteristics provide greater flexibility in the design of microelectrode array (MEA) probes with near cellular-scale sensing sites arranged in more dense arrays. Also, faster response times enable better resolution of transient acetylcholine signals and better correlation of these events with electrophysiological recordings so as to advance study of brain function.

Graphical abstract: Electroenzymatic choline sensing at near the theoretical performance limit

Supplementary files

Article information

Article type
Paper
Submitted
28 Sep 2020
Accepted
27 Nov 2020
First published
08 Dec 2020

Analyst, 2021,146, 1040-1047

Electroenzymatic choline sensing at near the theoretical performance limit

I. Huang, M. Clay, Y. Cao, J. Nie, Y. Guo and H. G. Monbouquette, Analyst, 2021, 146, 1040 DOI: 10.1039/D0AN01939A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements