Issue 3, 2021

Orange red-emitting carbon dots for enhanced colorimetric detection of Fe3+

Abstract

Carbon dots (CDs) have demonstrated considerable potential for use in sensing and bioimaging applications based on their unique intrinsic properties. However, CDs have typically been used as fluorescence sensors, as opposed to indicators, based on their ultraviolet absorption and discoloration performance. In this study, orange red-emitting CDs with a high quantum yield (QY) of 53% were constructed from 2,3-diaminopyridine via solvothermal synthesis. Different from the fluorescence quenching behavior reported previously, the constructed CDs demonstrated a unique character in their ultraviolet absorption and fluorescence emission in the presence of Fe3+. The color of the CD solution varied from mauve to orange following the addition of Fe3+ at concentrations exceeding 1 μM, which enabled these CDs to be used in the determination of the presence of Fe3+ in lake water. In addition, due to their negligible cytotoxicity, good solubility, and adequate dispersity, an outstanding cellular probe with near-infrared fluorescence was established. Overall, this study presents a unique CD-based sensor, details its fluorescence mechanism, visual colorimetry, and ultraviolet absorption variations, and confirms its applicability in near-infrared cellular imaging and environmental analyses.

Graphical abstract: Orange red-emitting carbon dots for enhanced colorimetric detection of Fe3+

Article information

Article type
Paper
Submitted
20 Oct 2020
Accepted
25 Nov 2020
First published
25 Nov 2020

Analyst, 2021,146, 1032-1039

Orange red-emitting carbon dots for enhanced colorimetric detection of Fe3+

J. Pu, C. Liu, B. Wang, P. Liu, Y. Jin and J. Chen, Analyst, 2021, 146, 1032 DOI: 10.1039/D0AN02075C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements