Issue 33, 2021

Investigation of the enhanced ability of bile salt surfactants to solubilize phospholipid bilayers and form mixed micelles

Abstract

The self-assembly in mixtures of the anionic bile salt surfactant sodium deoxycholate (NaDC) and the zwitterionic phospholipid 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) in physiological saline solution has been investigated using light scattering, small-angle X-ray scattering and cryo-transmission electron microscopy. Rather small tri-axial ellipsoidal NaDC–DMPC mixed micelles form at a high content of bile salt in the mixture, which increase in size as an increasing amount of DMPC is incorporated into the micelles. Eventually, the micelles begin to grow substantially in length to form long wormlike micelles. At higher mole fractions of DMPC, the samples become turbid and cryo-TEM measurements reveal the existence of large perforated vesicles (stomatosomes), coexisting with geometrically open disks. To our knowledge, stomatosomes have not been observed before for any bile salt–phospholipid system. Mixed micelles are found to be the sole aggregate structure in a very wide regime of bile salt–phospholipid compositions, i.e. up to about 77 mol% phospholipid in the micelles. This is much higher than the corresponding value of 25 mol% observed for the conventional surfactant hexadecyltrimethylammonium bromide (CTAB) mixed with DMPC in the same solvent. The enhanced ability of bile salt surfactants to solubilize phospholipid bilayers and form mixed micelles is rationalized using bending elasticity theory. From our theoretical analysis, we are able to conclude that amphiphilic molecules rank in the following order of increasing spontaneous curvature: phospholipids < conventional surfactants < bile salts. The bending rigidity of the different amphiphilic molecules increases according to the following sequence: bile salts < conventional surfactants < phospholipids.

Graphical abstract: Investigation of the enhanced ability of bile salt surfactants to solubilize phospholipid bilayers and form mixed micelles

Supplementary files

Article information

Article type
Paper
Submitted
20 May 2021
Accepted
04 Jul 2021
First published
29 Jul 2021

Soft Matter, 2021,17, 7769-7780

Investigation of the enhanced ability of bile salt surfactants to solubilize phospholipid bilayers and form mixed micelles

V. Forooqi Motlaq, M. Ortega-Holmberg, K. Edwards, L. Gedda, J. Lyngsø, J. S. Pedersen and L. M. Bergström, Soft Matter, 2021, 17, 7769 DOI: 10.1039/D1SM00745A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements