Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.



Complete zwitterionic double network hydrogels with great toughness and resistance against foreign body reaction and thrombus

Abstract

Conventional tough hydrogels offer enhanced mechanical properties for load-bearing implants; however, their application is still retarded by a lack of biocompatibility. In this study, we demonstrate a new methodology for developing biocompatible double network (DN) hydrogels by using a responsive amphoteric polymer as a first framework. Tough DN hydrogels were formed by penetrating the zwitterionic poly(sulfobetaine acrylamide) (PSBAA) into a swollen poly(lysine acrylamide) (PLysAA) network in an acidic or alkaline solution, and polymerizing under UV irradiation. The DN hydrogels were able to become zwitterionic entirely under a physiological condition, and possess the excellent mechanical strength, comparable to conventional DN hydrogels with permanently charged polyelectrolyte frameworks. Additionally, in vitro studies including biofouling, cytotoxicity and hemolysis were conducted to show the superior biocompatibility of the complete zwitterionic DN hydrogels. After the circulation of human blood in tubular DN hydrogels, the zwitterionic DN gels displayed a negligible thrombus formation. Furthermore, PLysAA/PSBAA hydrogels were implanted subcutaneously, showing excellent resistance against inflammatory response and long-term capsule formation. The work has presented a new strategy for synthesizing a biocompatible tough DN hydrogel to effectively mitigate the foreign body reaction to render the great benefit for the development of biomedical implants.

Back to tab navigation

Supplementary files

Article information


Submitted
05 May 2020
Accepted
24 Jun 2020
First published
30 Jun 2020

J. Mater. Chem. B, 2020, Accepted Manuscript
Article type
Paper

Complete zwitterionic double network hydrogels with great toughness and resistance against foreign body reaction and thrombus

K. Huang, P. Hsieh, D. Lien-Guo and C. Huang, J. Mater. Chem. B, 2020, Accepted Manuscript , DOI: 10.1039/D0TB01163K

Social activity

Search articles by author

Spotlight

Advertisements