Jump to main content
Jump to site search


Low electronegativity Mn bulk doping intensifies charge storage of Ni2P redox shuttle for membrane-free water electrolysis

Abstract

High efficiency electrochemical energy storage and a high areal capacitance solid-state mediator can act as an energy vector to solve the key problem in mixtures of H2 and O2 in electrically driven water splitting architectures. It is believed that introducing foreign metal atoms into a monometallic compound could promote the energy storage capacity of the mediator. Herein, based on the theoretical prediction that partial substitution of low electronegativity Mn in the Ni2P structure could enhance the local charge density around Ni and lower the rate-determining Gibbs free energy difference (ΔGOOH-ΔGO) compared to Fe substitution or the pure compound, a supercapacitor-type transition metal phosphide (TMP) mediator Ni-Mn-P with areal capacitance of 12.25 F cm-1 is fabricated. Benefitting from the enhanced energy storage activity and high exposure of active sites, the charge storage in the H2 generation step in a 1 cm2 Ni-Mn-P mediator electrode maintains >500 s O2 evolution (10 mA) when coupled with Ni2P/NF bifunctional electrodes, ~4 times longer than an unsubstituted Ni-P mediator. In addition, the superior stability for >20000 s cycle operation at 20 mA further demonstrates its operational flexibility and potential for practical application.

Back to tab navigation

Supplementary files

Article information


Submitted
16 Sep 2019
Accepted
02 Jan 2020
First published
06 Jan 2020

J. Mater. Chem. A, 2020, Accepted Manuscript
Article type
Paper

Low electronegativity Mn bulk doping intensifies charge storage of Ni2P redox shuttle for membrane-free water electrolysis

Z. Liu, G. Zhang, K. Zhang, H. Lan, H. Liu and J. Qu, J. Mater. Chem. A, 2020, Accepted Manuscript , DOI: 10.1039/C9TA10213B

Social activity

Search articles by author

Spotlight

Advertisements