Issue 30, 2020

Liquid–polymer triboelectricity: chemical mechanisms in the contact electrification process

Abstract

Liquid–polymer contact electrification between sliding water drops and the surface of polytetrafluoroethylene (PTFE) was studied as a function of the pH and ionic strength of the drop as well as ambient relative humidity (RH). The PTFE surface was characterized by using SEM, water-contact-angle measurements, FTIR spectroscopy, XPS, and Raman spectroscopy. The charge acquired by the drops was calculated by detecting the transient voltage induced on a specifically designed capacitive sensor. It is shown that water drops become positively charged at pH > pHzch (pHzch being the zero charge point of the polymer) while they become negatively charged for pH < pHzch. The addition of non-hydrolysable salts (NaCl or CaCl2) to water decreases the electrical charge induced in the drop. The charge also decreases with increasing RH. These results suggest proton or hydroxyl transfer from the liquid to the hydrophobic polymer surface. A proposed thermodynamic model for the ion transfer process allows explaining the observed effects of RH, pH and ionic strength.

Graphical abstract: Liquid–polymer triboelectricity: chemical mechanisms in the contact electrification process

Article information

Article type
Paper
Submitted
23 Apr 2020
Accepted
29 Jun 2020
First published
30 Jun 2020

Soft Matter, 2020,16, 7040-7051

Liquid–polymer triboelectricity: chemical mechanisms in the contact electrification process

M. D. Sosa, M. L. Martínez Ricci, L. L. Missoni, D. H. Murgida, A. Cánneva, N. B. D'Accorso and R. M. Negri, Soft Matter, 2020, 16, 7040 DOI: 10.1039/D0SM00738B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements