Issue 43, 2020, Issue in Progress

Influence of precursor ratio and dopant concentration on the structure and optical properties of Cu-doped ZnCdSe-alloyed quantum dots

Abstract

Tunable copper doped Zn1−xCdxS alloy quantum dots (QDs) were successfully synthesized by the wet chemical method. A one-step method is developed to synthesize doped ternary QDs which is more preferable than a two-step method. The influence of experimental parameters like the Zn/Cd ratio and Cu dopant concentration has been investigated using various spectroscopic techniques like UV-visible, photoluminescence, X-ray diffraction and Raman spectroscopy. The absorption and emission properties can be tuned by changing the concentration of components of the ternary QDs. The high concentration of dopant completely quenched the emission of the ternary QDs. EDX gives confirmation of the elemental composition of the synthesized samples. The obtained results suggest the successful doping of the ternary QDs. Interestingly, the study results revealed that the crystal structure (ZB and/or WZ) and the dual emission of the Cu-doped Zn1−xCdxSe alloy QDs could be controlled by varying the dopant concentration and chemical composition of the host. Doping also leads to enhancement in emission properties and provides more stability to ternary QDs. The enhancement in the photoluminescence (PL) decay lifetime of Cu-doped ternary QDs can be advantageous for optoelectronic and biosensor applications.

Graphical abstract: Influence of precursor ratio and dopant concentration on the structure and optical properties of Cu-doped ZnCdSe-alloyed quantum dots

Article information

Article type
Paper
Submitted
13 May 2020
Accepted
22 Jun 2020
First published
07 Jul 2020
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2020,10, 25618-25628

Influence of precursor ratio and dopant concentration on the structure and optical properties of Cu-doped ZnCdSe-alloyed quantum dots

N. X. Ca, H. T. Van, P. V. Do, L. D. Thanh, P. M. Tan, N. X. Truong, V. T. K. Oanh, N. T. Binh and N. T. Hien, RSC Adv., 2020, 10, 25618 DOI: 10.1039/D0RA04257A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements