Issue 25, 2020

Antibacterial activity evaluation and mode of action study of novel thiazole-quinolinium derivatives

Abstract

New antimicrobial agents are urgently needed to address the emergence of multi-drug resistant organisms, especially those active compounds with new mechanisms of action. Based on the molecular structures of the FtsZ inhibitors reported, a variety of thiazole-quinolinium derivatives with aliphatic amino and/or styrene substituents were synthesized from benzothiazolidine derivatives. In the present study, to further explore the antibacterial potential of thiazole-quinolinium derivatives, several Gram-positive and Gram-negative bacteria were treated with the newly modified compounds and the biological effects were studied in detail in order to understand the bactericidal action of the compounds. Our findings reveal that some of these derivatives possess good potent bactericidal activity as they can inhibit Gram-positive methicillin-resistant Staphylococcus aureus, vancomycin-resistant Enterococcus and also some Gram-negative organisms and NDM-1 Escherichia coli. Furthermore, compounds 4a1–4a4 and 4b1–4b4 altered the morphology of bacterial cells and the cells displayed a more-elongated shape compared to the untreated cells. Biochemical assays showed that 4a4 and 4b4 stimulate FtsZ polymerization in bacterial cells, which eventually disrupts its dynamic assembly and Z-ring formation. The inhibition of this crucial step in bacterial cell division could potentially represent their main mechanism of antibacterial activity. Cytotoxicity assay and hemolysis assay suggested that 4a4 and 4b4 possess low cytotoxicity. In summary, these results further highlight the importance of 4a4 and 4b4 that could be developed as potent and effective bacteriostatic agents against multi-drug resistant bacteria.

Graphical abstract: Antibacterial activity evaluation and mode of action study of novel thiazole-quinolinium derivatives

Supplementary files

Article information

Article type
Paper
Submitted
22 Jan 2020
Accepted
07 Apr 2020
First published
16 Apr 2020
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2020,10, 15000-15014

Antibacterial activity evaluation and mode of action study of novel thiazole-quinolinium derivatives

Y. Li, N. Sun, H. Ser, W. Long, Y. Li, C. Chen, B. Zheng, X. Huang, Z. Liu and Y. Lu, RSC Adv., 2020, 10, 15000 DOI: 10.1039/D0RA00691B

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements