Jump to main content
Jump to site search

Kinetically assembled binary nanoparticle networks

Author affiliations


Embedding percolating networks of nanoparticles (NPs) within polymers is a promising approach for mechanically reinforcing polymers and for introducing novel electronic, transport, and catalytic properties into otherwise inert polymers. While such networks may be obtained through kinetic assembly of unary system of NPs, the ensuing structures exhibit limited morphologies. Here, we investigate the possibility of increasing the diversity of NP networks through kinetic assembly of multiple species of NPs. Using lattice Monte Carlo simulations we show that networks obtained from co-assembly of two NP species of different sizes exhibit significantly more diverse morphology than those assembled from a single species. In particular, we achieved considerable variations in the particle spatial distribution, proportions of intra- and interspecies contacts, fractal dimension, and pore sizes of the networks by simply modulating the stoichiometry of the two species and their intra and inter-species affinities. We classified these distinct morphologies into “integrated”, “coated”, “leaved”, and “blocked” phases, and provide relevant phase diagrams for achieving them. Our findings are relevant to controlled and predictable assembly of particle networks for creating multifunctional composites with improved properties.

Graphical abstract: Kinetically assembled binary nanoparticle networks

Back to tab navigation

Supplementary files

Article information

20 Nov 2019
11 Feb 2020
First published
12 Feb 2020

Nanoscale, 2020, Advance Article
Article type

Kinetically assembled binary nanoparticle networks

J. Wang, B. H. Lee and G. Arya, Nanoscale, 2020, Advance Article , DOI: 10.1039/C9NR09900J

Social activity

Search articles by author