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Embedding percolating networks of nanoparticles (NPs) within polymers is a promising approach
for mechanically reinforcing polymers and for introducing novel electronic, transport, and catalytic
properties into otherwise inert polymers. While such networks may be obtained through kinetic
assembly of unary system of NPs, the ensuing structures exhibit limited morphologies. Here,
we investigate the possibility of increasing the diversity of NP networks through kinetic assembly
of multiple species of NPs. Using lattice Monte Carlo simulations we show that networks ob-
tained from co-assembly of two NP species of different sizes exhibit significantly more diverse
morphology than those assembled from a single species. In particular, we achieved consider-
able variations in the particle spatial distribution, proportions of intra- and interspecies contacts,
fractal dimension, and pore sizes of the networks by simply modulating the stoichiometry of the
two species and their intra and inter-species affinities. We classified these distinct morphologies
into “integrated”, “coated”, “leaved”, and “blocked” phases, and provided relevant phase diagrams
for achieving them. Our findings are relevant to controlled and predictable assembly of particle
networks for creating multifunctional composites with improved properties.

1 Introduction
Nanoparticles (NPs) are often added to polymers to improve their
mechanical properties or introduce new functions into the poly-
mers.1,2 The spatial distribution of NPs plays a critical role in
governing the properties of the resulting polymer nanocompos-
ites. In general, NPs can be present in three distinct states: dis-
persed, ordered, or random aggregate. In the dispersed state, the
NPs remain stably separated from each other due to repulsive or
weak interparticle interactions. This state represents the most
common scenario in applications, as it provides spatially uniform
and predictable enhancement in properties, usually proportional
to the NP loading fraction.3,4 In the ordered state, the NPs ex-
hibit stronger interactions and self-assemble into strings, sheets,
or globular superstructures with periodic arrangement of parti-
cles.5–8 This requires the particles to be highly uniform in size
and shape, and also demands stringent thermodynamic assem-
bly conditions for the NPs to attain their globally stable config-
uration, both of which are challenging to achieve in the case of
nanoscopic particles in viscous polymer melts. The more likely
outcome of NP assembly within polymers is the random aggre-
gate state, where NPs get kinetically trapped into fractal, often
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percolating networks.9,10 Such random fractal and percolating
structures have many promising applications. For example, per-
colating NP structures provide significantly higher mechanical re-
inforcement to polymers in the melt state than dispersed NPs
at equivalent loadings.5,11 Fractal and percolating NP structures
embedded within a polymer could also find applications in solid-
state electrolytes,12,13 flame retardants,14 and in catalysis and
sensing.15,16

Kinetically-trapped aggregates of particles are ubiquitous in na-
ture, occurring in systems as diverse as colloids,17,18 aerosols,19

foods,20 soot,21 and blood clots.22 The mechanism and kinet-
ics of aggregation, and the morphology of the resulting aggre-
gates, are well described by the cluster-cluster aggregation (CCA)
model.23,24 In this model, diffusing particles stick to each other
irreversibly upon contact to form rigid clusters, which continue
to diffuse and grow by colliding with other diffusing particles or
clusters. A cluster size-dependent diffusivity is often considered
and so is a contact area-dependent sticking probability which ac-
counts for the presence of energy barriers in the interparticle in-
teraction potential that may prevent particles from sticking the
instant they come into close proximity.25–28 Depending on the rel-
ative timescales of diffusion versus sticking, two regimes emerge:
diffusion-limited cluster aggregation (DLCA) and reaction-limited
cluster aggregation (RLCA).17 In the DLCA regime, the energy
barrier is negligible, so the aggregation kinetics are limited by the
collision time of particles, and the assembled structures are more
tenuous and extended.23,24 In contrast, in the RLCA regime, the
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aggregation kinetics are limited by the time taken by the particles
to overcome the repulsive barrier, and the formed structures are
denser with a higher fractal dimension.29

Most aggregation studies have focused on systems containing
a single species of particles. According to the CCA model, the
size distribution and morphology of aggregates in monodisperse
systems is controlled by particle volume fraction, their sticking
probability, and the scaling of diffusivity with respect to cluster
size,23,24,29 though this last parameter is usually constrained by
physical laws such as the Stokes-Einstein relationship where dif-
fusivity scales inversely with cluster dimension. While extreme
values of the above parameters can lead to low- and high-density
aggregates characteristic of the DLCA and RLCA regimes, the
overall morphology remains random fractal-like. Furthermore,
as we recently showed,25,30 NPs aggregating within polymer thin
films exhibit striking similarity in cluster growth and morphol-
ogy, irrespective of the particle size and shape and the molecular
weight of the polymer matrix. For instance, in all studied systems,
the mean size of NP clusters grew as a power-law with time and
their size distributions at all time points (except early stages of as-
sembly) exhibited characteristic bell-shaped curves that could be
collapsed onto a universal “master curve” upon appropriate time
and size normalization based on CCA theory.25 Thus, achieving
unique and complex aggregate morphologies seems to be beyond
the reach of monodisperse systems.

In this work, we explore the possibility of expanding the diver-
sity of NP assembly morphologies achievable by random aggrega-
tion through the introduction of a second species of NPs of size,
diffusivity, and sticking propensity different from the first species.
We hypothesize that the addition of a new, distinct NP species will
introduce additional length and time scales into the assembly sys-
tem and alter the sequence of assembly events, leading to new
and interesting aggregate morphologies. For instance, depending
on the affinity between the two species, the larger, slow-diffusing
NPs could act as obstacles or seeds to the assembly of the smaller,
more mobile NPs.31–35 Indeed, a few studies have shown the po-
tential of co-assembly of binary NPs in creating mesoscale-sized
structures and interpenetrating gels.10,36,37 To investigate such
kinetic co-assembly of two species of NPs, we used lattice-based
CCA simulations, an approach that allowed us to efficiently cap-
ture differences in the size, diffusivities, and contact areas of the
two species of NPs, as well as differences in affinities within and
across species, permitting rapid exploration of the vast parameter
space. We demonstrate that the time scale of intra- versus inter-
species assembly events can be tuned by the affinities between
NPs and exploited to create a variety of heterogeneous struc-
tures, which we classify as “integrated”, “coated”, “leaved” and
“blocked” phases. We characterize the local spatial organization,
composition, porosity, fractal dimension, and structural factor of
these structures. Such structures with unique and controllable
spatial distribution of NPs could lead to polymer nanocompos-
ites with novel mechanical,3,4 electromagnetic,38,39 and optical
properties.16,40

2 CCA Simulations
As a first step to exploring the full range of aggregate morpholo-
gies achievable through kinetic assembly of heterogeneous sys-
tems of NPs, we considered a binary system of large and small
NPs and studied their co-assembly using the CCA model simulated
on a two-dimensional (2D) lattice. As shown previously,30 this
model captures well the most salient aspects of NP aggregation
in polymers while enabling efficient exploration of the parameter
space. The 2D geometry not only allows for easy visualization of
NP aggregates and computational efficiency, but also represents
the common experimental scenario of NPs aggregating at fluid-
fluid interfaces41 or within polymer thin films.7,30

All CCA simulations were conducted on a 400× 400 square
lattice and implemented periodic boundary conditions to avoid
boundary effects. Each of the small and large NPs denoted by
"NP1" and "NP2" occupied 1×1 and 4×4 lattice sites, respectively
(Fig. S1). This size ratio implies that the diffusivity of NP2 is
about one-seventh of that of NP1 (based on the Stokes-Einstein
relationship discussed below) and the surface area is four times
larger. We performed simulations with varying numbers N1 and
N2 of the two species to explore the effects of particle area den-
sity ρ (fraction of lattice sites occupied by NPs) and species area
fractions φ1 or φ2 = 1− φ1 (fraction of particle-occupied sites oc-
cupied by NP1 or NP2). In particular, we considered N1 in the
range 10,000 to 30,000 and N2 in the range 200 to 800 (all pa-
rameters used in this study are summarized in Table 1), yielding
particle area densities in the range ρ = 0.0825 to 0.2675 and NP2
area fractions in the range φ2 = 0.10 to 0.56. We also explored
the effects of varying probabilities p11, p12 and p22 for individual
NPs to stick together when they collide with each other. These
probabilities were varied between 10−4 to 0.4, reflecting different
modifications of the NP surfaces that lead to distinct association
energy barriers. Consistent with previous analysis of the aggre-
gation dynamics of polymer-grafted NPs,25 we chose a maximum
sticking probability of 0.4 to reflect the presence of a small energy
barrier that prevents instantaneous bonding of NPs. We consid-
ered irreversible sticking of particles, a situation prevalent across
many particle systems10,42,43 that arises from strong interparticle
interactions, which lead to large energy barriers for cluster disso-
ciation.28 The above presciption allowed us to introduce distinct
diffusivities, NP stoichiometries, and assembly affinities between
NPs into the system.

Each simulation was initiated by randomly placing onto the lat-
tice the desired amounts of the two species, ensuring that no two
NPs occupy the same lattice site. For convenience we will use the

Table 1 Parameters values used in CCA simulations

Parameter Value
p11 10−4, 10−2, 0.4
p12 10−4, 10−2, 0.4
p22 10−4, 10−2, 0.4
γ −0.7
N1 10 000, 20 000, 30 000
N2 200, 400, 800
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term “cluster” to denote both isolated NPs and their growing clus-
ters. The diffusion of clusters was modeled as a random walk on
the lattice with self-diffusivity Ds given by

Ds = D0 (s/s0)
γ (1)

where s is the size of the cluster measured in terms of the number
of lattice sites it occupies, s0 = 1 and D0 are the size and self-
diffusivity of a reference cluster occupying a single lattice site,
i.e., an isolated NP1, and γ is a scaling coefficient that reflects
the size-dependence of the diffusivity of clusters.25 According to
Stokes-Einstein relationship, the diffusivity decays as Ds ∼ Rh

−1

with the hydrodynamics radius Rh of the cluster. For nonspher-
ical clusters, Rh is usually assumed to be equal to the radius of
gyration of the cluster Rg,44 which can then be related to the
fractal dimension df of fractal clusters via Rg ∼ s1/df ,45 yielding
Ds ∼ s−1/df . Comparing with Eq. (1), we obtain γ =−1/df. Based
on df ≈ 1.4 obtained from image analysis of NP aggregates formed
within polymer thin films,7,30 we set the value of γ to −0.7. Esti-
mating cluster diffusivities via Eq. 1 thus avoids the cost of com-
puting instantaneous values of Rg or df for each and every cluster
at each simulation step.

At the beginning of the simulation, when isolated NP1s still
exist, the time step was set at ∆t = τ, where τ = 1 is the unit
of time in our simulations. At each time step, an attempt was
made to move each and every cluster by one lattice site along a
random direction with probability Ds/D0 = (s/s0)

γ . If the move
resulted in an overlap between two clusters, the move was re-
jected, and the cluster stayed in its previous position. After all
clusters had completed their attempted moves, if two NPs be-
longing to different clusters were in contact with each other, then
these two clusters were merged together into one cluster with
probability pi j, which depends on the identities of the contact-
ing NPs, i.e., NP1 or NP2. At some point during the simulation,
all the isolated NP1s would get exhausted. If one continues to
use τ as the time step, the move probabilities given by (s/s0)

γ

would become increasingly smaller as the clusters grow, causing
the simulations to become increasingly inefficient. This issue can
be easily resolved by using an adaptive time step:25 At each time
step, we identify the smallest cluster in the system, whose size is
denoted by smin, and increase the move probability of each clus-
ter to Ds/Dmax = (s/smin)

γ , where Dmax is the diffusivity of this
smallest cluster with Dmax = D0(smin/s0)

γ . To compensate for this
increased mobility, the time step is multipled by this same factor,
i.e, ∆t =(D0/Dmax)τ. Thus, the adaptive time step keeps the move
probability of the smallest cluster to 1 without sacrificing any ac-
curacy. The sticking protocol at the end of the moves remains the
same as described above. The simulations were stopped when all
NPs had assembled into a single cluster. All the results were av-
eraged over 3 independent simulations with different initial NPs
positions.

The above 2D lattice model makes several assumptions about
NP assembly. First and foremost, it assumes a single co-planar
system of NPs, e.g., at an interface or in a ultrathin film, and thus
any interfacial deformations and wetting-dewetting effects occur-

ring in real systems are neglected. Second, the model accounts
for spatially-dependent interactions between NPs only in terms
of their “effects”: the overlap criterion that prevents NPs from
occupying the same lattice site accounts for the sharp excluded-
volume repulsion in the NP-NP interactions; the irreversible bond-
ing of NPs assumes a deep potential well that prevents NP clus-
ters from dissociating within aggregation timescales; and sticking
probabilities smaller than unity account for association energy
barriers, e.g., from polymer brushes on NPs. Third, the lattice
model can only accommodate translational diffusion of clusters,
and rotational effects are essentially ignored. Lastly, the model
assumes the formation of rigid clusters whose branches cannot
deform in response to interactions with other clusters.

3 Results

3.1 Overall morphology

We first examined the overall structure of the formed NP aggre-
gates, specifically how their morphology varied with the various
parameters of the system. We focused on the effects of varying
the sticking propensity of NPs, that is, the sticking probabilities
p11, p12, and p22 associated with the three kinds of NP-NP con-
tacts. Varying the numbers N1 and N2 produced more subtle ef-
fects that are discussed later in Sec. 3.5. All the results presented
till then are obtained using systems with fixed numbers of NPs:
N1 = 10,000 and N2 = 200, which yield an overall particle area
density of ρ ≈ 0.08 and an area fraction of φ2 ≈ 1/4 for the large
species. Aggregate structures assembled from a single species of
NPs at similar particle area density are shown in Fig. S2 for com-
parison. Like unary assembly of NPs, the binary system of NPs
also formed ramified fractal network structures regardless of the
sticking probabilities, as shown in Fig. 1. Based on how NP2 is
incorporated into the network, we classified the structures into
three phases: “integrated”, “covered”, and “leaved” phases. The
corresponding morphological phase diagram as a function of the
three sticking probabilities is shown in Fig. 1a, and representative
structures from the three phase labelled I1, I2, C, L1, and L2 are
provided in Fig. 1b–f.

In the “integrated” phase, both NP species are well-integrated
into the fractal network, with NP2 particles remaining either iso-
lated (Fig. 1b) or aggregated (Fig. 1c). This phase is obtained
when the small particles (NP1) bind to each other at similar rates
as they do to the large particles (NP2). When both these rates
are large, as in the case of p11 = 0.4, p12 = 0.4, and p22 = 0.01
(yielding structure I1, Fig. 1b), the initial clusters formed are a
mixture of homogeneous clusters composed of NP1 particles and
heterogeneous clusters containing mostly NP1 particles and few
[O(1)] isolated NP2 particles, consistent with their small number
fraction of 2%. These clusters continue to diffuse, collide, and
grow over time to yield a network structure with well dispersed
NP2. Simulation snapshots of these various intermediate stages
of assembly are provided in Figs. S3 and S4. In contrast, when the
rates of NP1 binding to each other and to NP2 are small, as in the
case of p11 = 0.0001, p12 = 0.0001, and p22 = 0.01 (I2, Fig. 1c), it
allows the NP2 particles to assemble first and form homogeneous
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Fig. 1 Morphology phase diagram and representative structures of different morphologies obtained from simulations. (a) Phase diagram of integrated,
coated, and leaved morphologies as a function of intra- and inter-species sticking probabilities. (b–f) Representative structures of an integrated phase
with large NPs dispersed (b), integrated phase with large NPs aggregated (c), coated phase (d), leaved phase with large NPs dispersed (e), and leaved
phase with large NPs aggregated (f). These five representative structures are denoted by I1, I2, C, L1, and L2, with the associated sticking probabilities
specified as (p11, p12, p22). Small NPs are shown in black and large NPs in red, and the number of NPs are fixed at N1 = 10,000 and N2 = 200.

clusters (Figs. S5 and S6). Only after these clusters are unable to
grow further due to their large size and vanishing diffusivities do
the NP1 particles start to form clusters of their own by sticking
to each other, sometimes using the NP2 aggregates as seeds. Fur-
ther assembly of these pure and NP2-seeded clusters leads to the
integrated phase containing aggregates of large NPs.

In the “coated” phase, the NP2 particles are fully coated
with NP1 particles and well dispersed within the NP1 network
(Fig. 1d). This phase is observed when the affinity between NPs
of different species is much greater than that between particles
of the same species, causing NP1-NP2 binding events to occur
at much faster rates than NP1-NP1 and NP2-NP2 binding events.
Figures S7 and S8, which depict the intermediate stages of as-
sembly for the representative structure obtained with p11 = 0.01,
p12 = 0.4, and p22 = 0.01 (C, Fig. 1d), illustrate how NP1 rapidly
coats the surface of NP2 and how the remaining NP1 particles
continue to assemble into larger clusters by the sticking to them-
selves and to the NP1 particles coating NP2 particles, ultimately
forming the network structure C shown in Fig. 1d. We find that
>80% of the neighboring sites of NP2 are occupied by NP1 parti-
cles in this phase, unlike the integrated phase where the surface
coverages range between 20% and 60%.

Lastly, the “leaved” phase is observed when the affinity be-
tween NP1 particles is much stronger than that between NP1 and
NP2 particles, and accordingly NP1-NP1 binding occurs at much
faster rate than NP1-NP2 binding. In this phase, NP1 particles
assemble and form a network first, and then individual or clus-
ters of NP2 particles collide with the NP1 network and attach to
it like “leaves” attached to the branches of a tree (Fig. 1e and
Fig. 1f). When p11 = 0.4 and p12 = 0.0001, and p22 = 0.0001 is
small, NP2 adheres as individual particles to the network, as a
result of slow NP2-NP2 binding rates, to form a network with

“small” leaves (L1, Fig. 1e). On the other hand, when p11 = 0.4
and p12 = 0.0001, but p22 = 0.01 is large, the NP2 particles are
able to form clusters of their own before attaching to the network,
leading to a network with “big” leaves (L2, Fig. 1f). The interme-
diate stages of assembly leading to both kinds of networks (with
small and big leaves) are provided in Figs. S9–S12.

Our results demonstrate how the relative time scales or rates of
binding events between the two species of NPs govern the result-
ing morphology of the NP aggregates and how this morphology
can be tuned via the sticking probabilities between particles, in
other words, the energy barriers in interparticle interactions. The
apparent insensitivity of the phase diagram shown in Fig. 1a to
the magnitude of p22 is related partly to the small proportion of
NP2 particles in the system, causing binding interactions medi-
ated by NP1 to take precedence over those mediated by NP2, and
partly to our definition of phases, where isolated and aggregated
forms of NP2 particles in the integrated and leaved phases are
classified as sub-phases and not independent phases.

3.2 Local composition and arrangement

We next analyzed the local composition and spatial distribution
of NPs in the obtained aggregates, properties expected to be im-
portant for applications that rely on coupling between neighbor-
ing particles. For instance, plasmonic resonances exhibited by
assemblies of noble metal NPs are sensitive to not only interpar-
ticle distances and orientations but also the type and coordina-
tion number of interparticle contacts.7,39,46. Similarly, the pres-
ence of interparticle heterojunctions can provide dramatically im-
proved catalytic activity when the different particle species func-
tion synergistically with each other.43,47 The local stoichiometry
and arrangement of particles could also be highly relevant to the
conduction of charge carriers48 and the collective optical proper-
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Fig. 2 Local composition of binary NP aggregates. (a) Average value of
f21, the fraction of neighboring sites of NP2 occupied by NP1, as a func-
tion of sticking probabilities. “I”, “C” and “L” in the figure denote integrated,
coated and leaved phases. (b) Whisker plot of f21 for the five representa-
tive structures shown in Fig. 1. The outliers are plotted individually using
the red “+” symbol. (c) Average value of f21, the fraction of neighboring
sites of NP2 occupied by NP2 as a function of sticking probabilities. (d)
Whisker plot of f22 for the same representative structures.

ties49 of polymer nanocomposites.

The local composition of our NP aggregates was characterized
in terms of the fraction of neighboring sites of NP2 particles that
are occupied by NP1 (Fig. 2a; also see Fig. S13) and NP2 (Fig. 2c;
also see Fig. S14), which are denoted by f21 and f22. In the inte-
grated phase, the NP1-NP2 and NP1-NP1 binding events occur at
similar time scales, so a moderate number of NP1 particles adhere
to the surface of NP2 particles, and the remaining NP1 particles
stick to each other and from clusters. Consequently f21 is in the
intermediate range of 20%-50% (Fig. 2a and Fig. 2b). The mag-
nitude of f22 depends on the rate of NP2-NP2 binding relative to
the other two binding events, and its value is close to zero when
the rate is small (I1, Fig. 2c) and reaches 15% to 25% when the
rate is comparable or larger (I2, Fig. 2d). In the coated phase,
NP1-NP2 binding events occur at a fast rate, and accordingly NP1
particles have sufficient time to cover the entire surfaces of NP2
before they successfully stick to each other. As a result, f21 is
close to 1 and f22 is close to 0 (Fig. 2b and Fig. 2d). In the leaved
phase, NP1 particles form a network first before NP2 particles at-
tach individually or in a clustered state to the network. Hence,
only a few NP1 particles contact NP2 particles, with f21 less than
20% (Fig. 2b). Depending on whether NP2 attach individually or
as aggregates, f22 can be close to zero (L1, Fig. 2d) or reach 20%-
35% (L2, Fig. 2d). These results show that the binding kinetics of
NPs within and across species dictates not only the overall mor-
phology of the aggregates but also their local environment.

The spatial distribution of NPs was characterized in terms of
the radial distribution functions (RDFs) g(r) between NPs, which

was calculated as follows for like and unlike pairs of NPs:

gαα (r) =
1

πrηα Nα

Nα−1

∑
i=1

Nα

∑
j>i

〈
δ (

∣∣ri j− r
∣∣)〉 , (2)

g12(r) =
1

2πrη2N1

N1

∑
i=1

N2

∑
j=1

〈
δ (

∣∣ri j− r
∣∣)〉 , (3)

where α = 1 and 2 denotes NP1 and NP2, N1 and N2 are the
number of NPs of the two species, η1 and η2 are their number
densities (number of particles per unit area), ri j is the distance
between NP i and j, and δ is the Dirac delta function.

Figure 3 presents the computed RDFs g11, g12, and g22 for all
identified phases. Note that due to the NPs being restricted to lat-
tice sites, the RDFs are discontinuous and exhibit discrete peaks.
Examining first the RDF between NP1 particles, we find that all
phases yield more or less similar g11, with all RDFs exhibiting
peaks at similar interparticle distances albeit with slightly differ-
ent heights. In particular, the peaks at short distances, e.g., the
first four peaks, corresponding to the first-, second-, and third-
nearest neighbors, are slightly higher in the integrated phase with
aggregated NP2 particles (I2, Fig. 3b) as compared to the rest
of the phases, including the integrated phase with isolated NP2
particles (I1, Fig. 3a; also see Fig. S15). The reason is that the
sticking probability p11 between NP1 particles is much smaller
in I2 as compared to the other phases (e.g., p11 = 10−4 in I2
vs 0.01 or 0.4 in other phases). This leads to RLCA-like condi-
tions whereby NP1 particles assemble into denser structures with
more NP1 neighbors around NP1 particles, leading NP1 network
in I2 having slightly thicker branches than in the other phases
(see Fig. 1c).

We next examined the RDF between NP2 particles, which ex-
hibit a larger closest-separation distance of r = 4 due to their
larger size. As expected, the integrated and leaved phases in
which NP2 particles are present in an aggregated state (I2, Fig. 1c
and L2, Fig. 1f) exhibit the largest peaks in g22, especially at dis-
tances between 4 and 5 representing directly contacting particles
(Figs. 3b and 3e; also see Figs. S16b and S16e). Even in the
leaved phase in which NP2 particles exhibit very slow sticking
probability with each other and remain relatively more dispersed
(L1, Fig. 1e), we observe appreciable peaks in g22 (Fig. 3d and
Fig. S16d). Only in the integrated and coated phase in which NP2
particles gets incorporated individually as bare or NP1-coated
particles into the growing network of NP1 particles (L1, Fig. 1b
and C, Fig. 1d), do these peaks in g22 become truly negligible
(Figs. 3a and 3c; Figs. S16a and S16c). Thus, interestingly, the
inter-species rate of binding between NP1 and NP2 is more im-
portant than the intra-species binding rate between NP2 in deter-
mining the aggregation state of NP2.

Lastly, we examined the RDF between NP1 and NP2 particles.
As expected, the coated phase exhibits the most significant peaks
in g12 (Fig. 3c; also see Fig. S17c), as more than 90% of the sur-
face of NP2 particles is covered by NP1 particles in this phase, a
result of p12 � p11, p22. These peaks are less significant but still
appreciable in the integrated phase (Fig. 3a and 3b; Figs. S17a
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Fig. 3 NP-NP radial distribution function for the five representative structures shown in Fig. 1. Each figure is labeled with the corresponding structure
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N2 = 200. The sticking probabilities are specified as (p11, p12, p22).

and S17b) and almost negligible in the leaved phase (Figs. 3d
and 3e; Figs. S17d and S17e).

Overall, the most prominent peaks in the RDFs arise from g11

in the integrated phase with dispersed NPs (I1, Fig. 3a), from
g12 in the coated phase (Fig. 3c), and from g22 in the remain-
ing phases (I2, L1 and L2, Figs. 3b, 3d and 3e). Furthermore,
among the three RDFs, g11 is clearly the most insensitive to the
nature of the phase formed. This is consistent with NP1 particles
dominating the overall morphology of the binary aggregates (see
Fig. 1), likely due to their higher number density and diffusivi-
ties compared to NP2. Our results also indicate that while NP1
always forms branched-network structures, NP2 particles either
form compact aggregates or remain dispersed in the system.

3.3 Fractal dimension

An important feature of the obtained NP aggregates is their self-
similarity over different length scales, which can be described by
their fractal dimension df. In the context of polymer nanocom-
posites, the fractal dimension of the particle aggregates deter-
mines to an extent the measured optical scattering and absorp-
tion spectra of the composites50,51 and the particle loadings re-
quired to achieve percolation,18 which is relevant to applications
such as mechanical reinforcement.5,11 Unlike deterministic frac-
tals, our structures are random fractals and do not possess a spe-
cific repeating structural motif. There are several methods to cal-
culate the fractal dimension of random fractals.52 One method
is through the relationship between the cumulative distribution
function C(r) and the radius r:30

C(r)∼ (r)df−d , (4)

where C(r) is the fraction of lattice sites occupied by NPs in a
circle of radius r centered at any point within the NP cluster, and
d is the system dimensions (d = 2). Another method is through

the relationship between cluster mass M (cluster size s) and its
radius of gyration Rg:

M ∼ (Rg)
df . (5)

A third method is through the structure factor S(q), which can be
calculated as:53,54

S(q) = N−1
N

∑
i, j=1

sin(qri j)

qri j
, (6)

where q is the magnitude of the scattering wave vector, N is the
cluster size (total number of lattice sites occupied by the cluster),
and ri j is the distance between NP i and NP j. At intermediate
values of q, i.e., 1/Rg < q < 1/s0, S(q) exhibits the power-law be-
havior ∼ q−df .

In this work, we used all three methods to calculate df. Fig-
ure 4a presents a typical C(r) function (calculated for the I1 struc-
ture presented in Fig. 1b) showing how it decays with r, and how
df can be estimated from the sum of its slope (in a log-log plot)
and d. Figure 4b shows the scaling of M with Rg for the same
structure, and how df can be obtained from its slope in a log-log
plot. Lastly, Fig. 4c shows the structure factor (also see Fig. S18),
also for the same structure, which allows us to estimate df from
the slope of the S(q) in a log-log plot. The values of df obtained
by using the three methods (1.51, 1.54, and 1.51) are quite close.
Note that due to the random nature of the aggregates, the meth-
ods are not expected to yield identical fractal dimensions.

The fractal dimensions of aggregates obtained for the various
combinations of sticking probabilities explored thus far and calcu-
lated using these three methods are presented in Figs. 4d-f. Even
though the df values exhibit minor differences between the three
methods, the general trend we obtain is that df is small when p11

and p12 are relatively large. The reason is that the rate of suc-
cessful NP1-NP1 and NP1-NP2 binding events is generally higher
than that of NP2-NP2 binding events due to the small diffusivity
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and low concentration of NP2 particles, and hence the aggrega-
tion process is dominated by NP1-NP1 and NP1-NP2 bindings.
Consequently, their sticking probabilities p11 and p12 determine
whether the assembly process is diffusion limited, which leads to
low df, or reaction limited, which leads to higher df.

3.4 Porosity and aggregate size

Another useful property to characterize, especially for the
network-like structures obtained here, is their porosity, a property
that is highly relevant to applications in gas separation, filtration,
sensing, and catalysis.15,16,55 To obtain the pore size distribution
and overall compactness of our aggregates, we employed the fol-
lowing scheme (Fig. 5a): We first retrieved the unwrapped co-
ordinates of the aggregate. Second, we obtained the smallest
possible ellipse that encapsulates roughly 60% of the NPs; the
area πR1R2 of the ellipse, where R1 and R2 are its semi-major
and semi-minor axes, provides a measure of the size of the ag-
gregate and its compactness. Next, we sampled the pores within
the aggregate, using the ellipse as a boundary. To this end, we
randomly picked an unoccupied lattice site within the ellipse and
used that point as the origin of a circle whose size was expanded
until it began to contact the aggregate. If the circle exhibited
one contact point with the aggregate, the circle was translated
along the line connecting the origin and the contact point and ex-
panded in an iterative manner until the circle started to contact
another point on the aggregate. Such a circle with two contact
points was translated along the perpendicular bisector of the line
connecting the two contact points and expanded in an iterative
manner until the circle contacted a third point on the aggregate.
If the three contact points formed an acute triangle, then the cir-
cle was completely confined by the NPs of the aggregate. If the
three points formed an obtuse triangle, then the circle was further

translated and expanded until it was completely confined by the
aggregate. The diameter dp of the confined circle then gives the
pore size of the aggregate at the initially chosen lattice site. Sam-
pling dp across multiple (100,000 times for each aggregate) such
randomly-picked unoccupied sites within the ellipse yielded the
area-weighted pore-size distribution, which can be appropriately
averaged to obtain the number- and area-averaged pore size. See
ESI for more details.

Figure 5b–d shows the aggregate size and their number- and
area-averaged pore sizes for the 27 systems investigated here
with distinct combinations of sticking probabilities. To improve
accuracy, all results were averaged over 15 independent simula-
tion runs at each condition. Our results indicate that the size of
the aggregates is determined primarily by the magnitude of p11,
with large sticking probabilities leading to large aggregates, and
p12 and p22 play a negligible role (Fig. 5b). As the total num-
ber of particles is held constant, a large aggregate also means a
more extended structure, and a small aggregate means a more
compact structure. These results are consistent with NP1-NP1
assembly driving the overall morphology of the aggregates and
with the aggregates becoming increasingly tenuous and extended
with increasing sticking propensities, as discussed earlier. We find
that variations in p11 can cause up to two-fold variations in the
compaction or extension of the aggregates. The relationship be-
tween average pore size and p11 is also very clear: reducing p11

results in structures with smaller pore size (Fig. 5c and Fig. 5d),
although this trend is less evident for the area-averaged pore size
than the number-averaged pore size. Interestingly, we observe a
large, almost five-fold, difference in the values of the area- and
number-averaged pore sizes. This difference clearly arises due to
the large polydispersity in pore sizes, testament to the random
and fractal nature of the structures. Overall, our results indicate
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that the cluster size and porosity of the aggregates can be tuned
by changing the affinity between the NPs, especially the dominant
species.

3.5 Effects of NP stoichiometry, loading, and system size
All results presented so far were obtained using systems con-
taining N1 = 10,000 and N2 = 200 particles, corresponding to
NP2 area fraction of φ2 = 0.24 and an overall particle density
of ρ = 0.083. We also investigated 8 additional systems with
N1 = 10,000, 20,000, or 30,000 and N2 = 200, 400, or 800, span-
ning a broad range of area fractions (φ2 = 0.10–0.56) and overall
densities (ρ = 0.083–0.27) to study the effects of these two param-
eters. We characterized the morphologies of the aggregate struc-
tures obtained from these additional systems, and also computed
the local composition, fractal dimension, size, and porosity of the
aggregates for one of the additional systems, the one with high NP
loading of N1 = 30,000 and N2 = 800. While complete phase dia-
grams in morphologies and properties along with representative
structures for these new systems are provided in Figs. S19-S29 in
the ESI, below we highlight only the most salient aspects of these
results.

We found that systems with mass fractions φ2 . 0.25, irre-
spective of the overall particle loadings, yielded phase diagrams
with integrated, coated, and leaved morphologies very similar to
those presented in Fig. 1. This includes systems with [N1 N2] =

[20,000 200] (Fig. S21), [20,000 400] (Fig. S22), [30,000 200]
(Fig. S24), and [30,000 400] (Fig. S25).

The rest of the systems with [N1 N2] = [10,000 400] (Fig. S19),

[10,000 800] (Fig. S20), [20,000 800] (Fig. S23), and [30,000 800]
(Fig. S26) in which NP2 particles are present at higher mass frac-
tion exhibited a new morphology (in addition to the integrated,
coated and leaved phases) that we refer to as the “blocked” phase.
Figure 6 illustrates various properties of this phase using the
example of a system containing N1 = 10,000 and N2 = 800 at
φ2 ≈ 0.56. In the blocked phase, the two species of NPs are well
segregated, as in the leaved phase with aggregated NP2 parti-
cles (L2; Fig. 1f), except that the NP2 leaves are long enough to
bridge distinct portions of the NP1 network, resulting in a con-
tiguous network of long branches or blocks of NP1 and NP2 par-
ticles (Fig. 6b; Figs. S19f, S20f, S23f, and S26f). The phase dia-
gram presented in Fig. 6a reveals that the blocked phase appears
when NP1 particles stick to each other at much higher rates than
they do to NP2 particles, again, conditions similar to those pro-
ducing the leaved phase at smaller NP2 fractions. Here, though,
the NP2 particles are available at high concentration, which al-
lows the particles to assemble into large clusters while the NP1
particles are still in the process of forming the network. This pro-
vides these large NP2 clusters the time to integrate with the NP1
clusters before they all come together to form a closed network.
However, if the sticking probability p22 between NP2 particles is
very small, they assemble too slowly and are unable to properly
integrate with the network, and the usual leaved phase ensues
(green triangle in Fig. 6a). Since NP1 and NP2 particles are seg-
regated from each other, the RDF peaks in both g11 and g22 are
strong while those in g12 remain quite weak (Fig. 6c). The frac-
tal dimension of the structure is about 1.54, as calculated from
its structure factor (Fig. 6d), which is quite similar to that of the
integrated phase.

Apart from the new phase, the phase diagram in Fig. 6a shows
another difference, albeit subtle, from that of Fig. 1a. Specifically,
all systems with p11 = 0.01, p12 = 0.4 that formed a coated phase
at low φ2 now form an integrated phase at high φ2. The reason
is the number of NP1 particles are not sufficient to completely
coat the surface of NP2 particles. As a result, the final structure
with relatively bare NP2 particles integrated within the NP1 net-
work resemble more the integrated phase than a coated phase,
see Fig. S27 for the structure.

We next compared the local compositions, fractal dimensions,
cluster sizes, and porosities discussed thus far for the system at
low particle loading (Figs. 2, 4, and 5) against those computed
for one of the additional systems in the opposite regime of high
loading (Fig. S28). Our comparison revealed that many of the
already discussed trends in these properties with respect to the
sticking probabilities are also observed at high loading, though
some intriguing differences also arise. In particular, we found
that the computed f21 and f22 remain similar across the two sys-
tems (Fig. 2a and 2b vs. Fig. S28a and S28b), suggesting that
the local composition of aggregates is not affected by NP load-
ing. The cluster size also decreases with decreasing p11 in both
systems (Fig. 5b vs. Fig. S28c), though the relative size variation
with p11 is much smaller at high loading. Interestingly, we found
that the pore size becomes larger with increasing p11 at high load-
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ings (Fig. S28d), a trend opposite to that observed at low loadings
(Fig. 5c). This difference may be understood as: at low loading,
increasing p11 leads to larger and sparser clusters, which natu-
rally then leads to larger pores. However, at high loading, the
cluster sizes are comparable at small and large p11, but decreas-
ing p11 leads to thicker network branches and thereby larger pore
(see Fig. S29). This observation also likely explains why the frac-
tal dimension was found to increase with increasing p11 at high
loading (Fig. S28e), but decrease with the same sticking proba-
bility at low loadings (Fig. 4f).

We also found that the fractal networks become increasingly
compact with smaller pores and higher percolation as the overall
density is increased, keeping the mass fraction of the two species
more or less constant. Comparing for instance the structures ob-
tained with [N1 N2] = [10,000 200] at ρ = 0.083 (Fig. 1), [N1 N2]

= [20,000 400] at ρ = 0.17 (Fig. S22), and [N1 N2] = [30,000 400]
at ρ = 0.23 (Fig. S25) in the case of p11 = 0.4, p12 = 0.4, and
p22 = 0.01, we found the area-average pore size decreases from
39 to 23 to 12 while the fractal dimension only changes little be-
tween 1.53 and 1.57.

Lastly, to confirm that all intensive properties of aggregates re-
ported so far are insensitive to our choice of system size, we per-
formed simulations using a 4× larger simulation box (800× 800
lattice with N1 = 40000,N2 = 800, p11 = p12 = p22 = 0.4) corre-
sponding to one of the studied systems (with N1 = 10000,N2 =

200, p11 = p12 = p22 = 0.4). Our results show that the local dis-
tribution of NPs and the fractal dimension of the aggregates are
indeed unaffected by system size (Fig. S30 and Fig. S31), whereas
the overall size of aggregates and their average pore size shift to-
wards larger values as the clusters grow into larger aggregates
on the larger lattice and larger pores begin to appear (compare
Figs. S30a and S30b). Although the absolute values of the pore
sizes may change, the relative variation in pore sizes as a func-
tion of sticking probabilities, NP densities and stoichiometries is

not expected to change with box size.

4 Discussion

We used lattice Monte Carlo simulations to explore the possi-
ble kinetically-trapped aggregate morphologies obtained from co-
assembly of a binary system of NPs in two dimensions. This work
is motivated by the observation that the random aggregates typ-
ically obtained from homogeneous systems of particles exhibit a
limited set of morphologies. Therefore, we sought to examine if
the addition of a second species of particles of different size, diffu-
sivity, and binding propensity could increase the diversity of mor-
phologies achievable through random aggregation. We hypothe-
sized that the new species would introduce additional length and
time scales related to the size of the new species and its rates
of assembly with itself and with the existing species. Our simu-
lations show that, indeed, the random fractal networks formed
from binary mixtures of small and large NPs exhibit much larger
variations in morphology compared to those formed from a sin-
gle NP species. In particular, based on the relative concentration
of the two species and the magnitudes of intra- and inter-species
sticking probabilities, the NPs were found to assemble into one of
the four distinct morphologies that we termed integrated, coated,
leaved, and blocked phases. These morphologies differed most
significantly from each other in: (1) local distribution of small
NPs around the large NPs, with the fraction of surface area of
large NPs occupied by small NPs varying from 3% to 98% across
the various morphologies; and (2) spatial organization of large
NPs within the networks, where the large NPs were present in ei-
ther dispersed or aggregated form and either segregated or fully
integrated into the small-NP structures. The fractal networks as-
sembled from binary systems also exhibit much larger variations
in pore sizes compared to those assembled from a single species
at equivalent particle area densities (28–44 from two species vs.
32–36 from one species; Fig. 7c; also see Table S1), though the
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corresponding increases in the range of achievable fractal dimen-
sions (1.50–1.64 vs. 1.53–1.62; Fig. 7a) and cluster sizes (32000–
64000 vs. 39000–64000; Fig. 7b) are more modest.

Our results demonstrate how the morphology of binary aggre-
gates of NPs can be effectively tuned by varying the relative rates
of the three binding events underlying assembly, i.e., NP1-NP1,
NP2-NP2, and NP1-NP2 binding. One can estimate these rates
at the early stages of assembly when only isolated particles ex-
ist. Based on reaction-rate theory,56 the rate of NP1-NP2 bind-
ing events in 2D is given by R12 ' 2π(D1 +D2)η1η2 p12 f (s1,s2),
where η1 and η2 are the concentrations (number densities) of the
two species, D1 and D2 are their self-diffusivities, and f (s1,s2)

is a logarithmically increasing function of their sizes. Similarly,
the rates of NP1-NP1 and NP2-NP2 binding events are given by
R11 ' 4πD1η1

2 p11 f (s1) and R22 ' 4πD2η2
2 p22 f (s2). Given that

diffusivity and particle size have opposite effects on the rate, and
in fact almost cancel out in 3D, the NP binding rates then mostly
depend on the concentrations and the sticking probabilities of the
binding partners. While both effects similarly modulate the bind-
ing rates (both proportionally), the sticking probabilities enable
the widest possible modulation in binding rates. The reason is
that one can achieve orders of magnitude variations in binding
rates through moderate changes in the interaction energy barri-
ers between particle due to exponential dependence of sticking
probabilities on energy barriers. Indeed, the largest variations in
network morphologies obtained in this work were achieved by
orders of magnitude variations in the three sticking probabilities,
and the effects of stoichiometry, which only varied four-fold, were
understandably more subtle.

The NP networks predicted here could be especially relevant
in polymer nanocomposites, where fractal networks have been
shown to significantly enhance the mechanical properties of poly-
mers,5,11 improve the ionic conductivity of solid polymer elec-
trolytes,12,13,57–59 and enable other applications in optical data
storage, sensing, imaging, catalysis, gas-liquid barriers, and pho-
tothermal therapy16,60–63, where porous networks of NPs are re-
quired. The new network morphologies obtained could enable
further improvements in such functions. For instance, the mod-
ulus and yield stress of polypropylene were found to be most

strongly enhanced when both nanoclay and CaCO3 NPs were in-
corporated into the polymer as opposed to individual species of
NPs at similar volume fractions.64 Furthermore, the existence of
two species of NPs within the networks coupled with the ability to
tune the number of contacts and overall organization of the two
species of NPs within the networks could impart new functions
into composites not possible with single species of NPs. For in-
stance, interfaces between two types of NPs are highly relevant to
heterogeneous catalysis,15,43 electron tunnelling,65 charge sepa-
ration,66 and plasmonics.7,39,46,67

While this study focused on a 2D assembly system, the ag-
gregate morphologies and trends in properties presented here
should remain qualitatively similar to those expected from 3D
systems. Given that the underlying physics governing assembly
morphology remains the same across 2D and 3D systems (i.e.,
large NPs diffusing slower than small NPs but providing a larger
contact area for collision and sticking, particle stoichiometry gov-
erning frequencies of intra- vs. inter-species collisions, and stick-
ing probabilities governing reaction- vs. diffusion-limited regimes
of assembly), we expect the same integrated, coated, leaved, and
blocked phases to also appear in 3D. In the same vein, we also
expect to observe similar trends in the relationship between the
local distribution, fractal dimensions, and porosities of the aggre-
gated structures with the input sticking probabilities, even though
the absolute values of some of these properties will likely be dif-
ferent in 3D. Thus, while it is necessary to extend the assembly of
binary NPs to 3D systems, the results obtained here from the 2D
model already provides useful insights and guidelines for under-
standing assembly of binary networks in 3D.

5 Conclusions
We investigated via lattice simulations the range of network mor-
phologies achievable through kinetic assembly of binary systems
of NPs. We showed how the the sizes, stoichiometries, and affini-
ties between NPs could be exploited to regulate the kinetics of
intra- and inter-species binding events and create a range of het-
erogeneous network morphologies, which could be categorized
into four main classes—integrated, coated, leaved, and blocked
phases. These phases exhibited striking differences in the local
composition and spatial distribution of NPs as well fractal dimen-
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sions and porosities. These new heterogeneous particle networks
have the potential to introduce novel properties into polymer-NP
composites, or improve existing properties of composites, espe-
cially in the context of mechanical, electrical, and optical com-
posite materials. From a more general point of view, our study
also provides fundamental insights into the assembly kinetics of
multicomponent particle systems.
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