Jump to main content
Jump to site search


Increasing Heat Transfer Performance of Thermoplastic Polyurethane by Constructing Thermal Conduction Channels of Ultra-thin Boron Nitride Nanosheets and Carbon Nanotubes

Abstract

Thermal interface materials (TIMs) have become more and more necessary in miniaturized modern devices, so the exploration of highly thermally conductive TIMs with flexibility and elasticity are of great significance. Herein, a polymer-based thermoplastic polyurethane (TPU) composite membrane with high thermal conductivity, flexibility and elasticity was conveniently prepared via constructing thermal conduction channels of ultra-thin hexagonal boron nitride nanosheets (h-BNNSs) and carbon nanotubes (CNTs). Then the maximum thermal conductivity of h-BNNSs/CNTs/TPU composite is up to 1.35 W/m·K, increasing thermal conductivity of original polymer TPU about 513%. The excellent thermal conductivity is contributed into constructing the multi-channel heat transfer structure among the ultra-thin h-BNNSs with good in-plane thermal conductivity and CNTs. Moreover, the composite membrane has fantastic insulation and it can be stretched to at least 300 % of its original length. Therefore, the fabricated h-BNNSs/CNTs/TPU composite membrane has great potential of widely used as an important TIMs in thermally conductive applications.

Back to tab navigation

Supplementary files

Article information


Submitted
21 Aug 2020
Accepted
08 Oct 2020
First published
08 Oct 2020

New J. Chem., 2020, Accepted Manuscript
Article type
Paper

Increasing Heat Transfer Performance of Thermoplastic Polyurethane by Constructing Thermal Conduction Channels of Ultra-thin Boron Nitride Nanosheets and Carbon Nanotubes

Y. Ruan, N. Li, C. Liu, L. Chen, S. Zhang and Z. Wang, New J. Chem., 2020, Accepted Manuscript , DOI: 10.1039/D0NJ04215C

Social activity

Search articles by author

Spotlight

Advertisements