Issue 26, 2020

Studies of the stability, nucleophilic substitution reactions, DNA/BSA interactions, cytotoxic activity, DFT and molecular docking of some tetra- and penta-coordinated gold(iii) complexes

Abstract

Two gold(III) complexes, square-planar [Au(DPP)Cl2]+(1) and distorted square-pyramidal [Au(DMP)Cl3] (2) (where DMP = 2,9-dimethyl-1,10-phenanthroline and DPP = 4,7-diphenyl-1,10-phenanthroline), were studied by different experimental methods. Their stability in water and in buffer solution (25 mM Hepes, 30 mM NaCl, pH = 7.2) was investigated by UV-Vis spectroscopy while their redox stability is confirmed by CV. Substitution reactions between complexes 1 and 2, and biologically relevant ligands, such as thiourea (Tu), guanosine-5′-monophosphate (5′-GMP), glutathione (GSH) and L-methionine (L-Met), were studied by a stopped-flow technique, under the pseudo-first order conditions as a function of ligand concentration and temperature. According to the values of the activation parameters, all studied reactions followed an associative substitution mechanism. DNA binding studies of complexes 1 and 2 were performed by UV-Vis and fluorescence spectroscopy and viscosity measurements, as well as interactions with bovine serum albumin (BSA). Density functional theory (DFT) was implemented in order to analyse the wave function of the optimized structures to get better insight into the binding interactions between the inert ligands and gold(III) center. The experimental results of binding studies with DNA and BSA were simulated and compared by performing a molecular docking study. All results demonstrate the strong connection between the reactivity of the complexes toward biologically important targets and their structural and electronic characteristics. The cytotoxic activity of complexes 1 and 2 against different cell lines (MDA-MB-231, HCT-116, and HaCaT) was evaluated 24 and 72 h after treatments. The results indicate reduced viability of cell lines in a time- and dose-dependent manner.

Graphical abstract: Studies of the stability, nucleophilic substitution reactions, DNA/BSA interactions, cytotoxic activity, DFT and molecular docking of some tetra- and penta-coordinated gold(iii) complexes

Supplementary files

Article information

Article type
Paper
Submitted
22 Apr 2020
Accepted
05 Jun 2020
First published
08 Jun 2020

New J. Chem., 2020,44, 11172-11187

Studies of the stability, nucleophilic substitution reactions, DNA/BSA interactions, cytotoxic activity, DFT and molecular docking of some tetra- and penta-coordinated gold(III) complexes

S. Radisavljević, A. Đeković Kesić, D. Ćoćić, R. Puchta, L. Senft, M. Milutinović, N. Milivojević and B. Petrović, New J. Chem., 2020, 44, 11172 DOI: 10.1039/D0NJ02037K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements