Jump to main content
Jump to site search

Issue 11, 2020
Previous Article Next Article

Electron accepting naphthalene bisimide ligand architectures for modulation of π–π stacking in nanocrystal hybrid materials

Author affiliations

Abstract

Investigation of charge transfer in quantum dot (QD) systems is an area of great interest. Specifically, the relationship between capping ligand and rate of charge transfer has been studied as a means to optimize these materials. To investigate the role of ligand interaction on the QD surface for electron transfer, we designed and synthesized a series of ligands containing an electron accepting moiety, naphthalene bisimide (NBI). These ligands differ in their steric bulk: as one allows for π–π stacking between the NBI moieties at high surface coverages, while the other does not, allowing for a direct comparison of these effects. Once grafted onto QDs, these hybrid materials were studied using UV-Vis, fluorescence, and transient absorption spectroscopy. Interestingly, the sample with the fastest electron transfer was not the sample with the most NBI π–π stacking, it was instead where these ligands were mixed amongst oleic acid, breaking up H-aggregates between the NBI groups.

Graphical abstract: Electron accepting naphthalene bisimide ligand architectures for modulation of π–π stacking in nanocrystal hybrid materials

Back to tab navigation

Supplementary files

Article information


Submitted
16 Jun 2020
Accepted
25 Aug 2020
First published
03 Sep 2020

Nanoscale Horiz., 2020,5, 1509-1514
Article type
Communication

Electron accepting naphthalene bisimide ligand architectures for modulation of π–π stacking in nanocrystal hybrid materials

K. C. Elbert, M. M. Taheri, N. Gogotsi, J. Park, J. B. Baxter and C. B. Murray, Nanoscale Horiz., 2020, 5, 1509
DOI: 10.1039/D0NH00359J

Social activity

Search articles by author

Spotlight

Advertisements