Jump to main content
Jump to site search
PLANNED MAINTENANCE Close the message box

Scheduled maintenance work on Wednesday 21st October 2020 from 07:00 AM to 07:00 PM (BST).

During this time our website performance may be temporarily affected. We apologise for any inconvenience this might cause and thank you for your patience.


Issue 9, 2020
Previous Article Next Article

Ductile cooling phase change material

Author affiliations

Abstract

Cooling represents a considerable fraction of energy consumption. However, it is indispensable to develop eco-friendly, biocompatible, and ductile cooling materials for personal applications. In this study, we demonstrate the ductile cooling ability with phase change of thermally passivated hydrogel composite materials with additive manufacturing ability. Thermal evaluation of such water-based composites indicates a superior cold retention capacity with a cooling comfort over 6 hours, while the composite displays a full recovery when strained up to 80% in uniaxial compression tests as a result of the intertwining between covalent and ionic bonds. A three-layered rectangular model was utilized to simulate the problem in a steady-state thermal analysis to study the cooling effect. Our findings indicate the potential of hydrogel as a cooling phase-change medium and its contribution towards ductile cooling applications.

Graphical abstract: Ductile cooling phase change material

Back to tab navigation

Supplementary files

Article information


Submitted
08 Jun 2020
Accepted
29 Jul 2020
First published
29 Jul 2020

This article is Open Access

Nanoscale Adv., 2020,2, 3900-3905
Article type
Paper

Ductile cooling phase change material

P. Gogoi, Z. Li, Z. Guo, S. Khuje, L. An, Y. Hu, S. Chang, C. Zhou and S. Ren, Nanoscale Adv., 2020, 2, 3900
DOI: 10.1039/D0NA00465K

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material and it is not used for commercial purposes.

Reproduced material should be attributed as follows:

  • For reproduction of material from NJC:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
  • For reproduction of material from PCCP:
    [Original citation] - Published by the PCCP Owner Societies.
  • For reproduction of material from PPS:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
  • For reproduction of material from all other RSC journals:
    [Original citation] - Published by The Royal Society of Chemistry.

Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.


Social activity

Search articles by author

Spotlight

Advertisements