Issue 4, 2020

Effect of anion dimensionality on optical properties: the [B7O10(OH)2] layer in CsB7O10(OH)2vs. the [B7O12] framework in CsBaB7O12

Abstract

Two new caesium borates, CsB7O10(OH)2 and CsBaB7O12, were synthesized in a high-temperature vacuum system and high-temperature open system, respectively. They all crystallize in the monoclinic space groups, C2/c (no. 15) and P21/c (no. 14), respectively. Their structures show different dimensional anionic architectures. CsB7O10(OH)2 has two-dimensional (2D) [B7O10(OH)2] anionic layers with the [B7O12(OH)2] fundamental building block (FBB) which displays a novel connection mode. CsBaB7O12 possesses a three-dimensional (3D) [B7O12] anionic open-framework with the [B7O15] FBB. The characterization of their properties combined with experimental and theoretical methods reveals that the two hepta-borates show differences in their optical properties due to their different optical anisotropies which are influenced by their anionic structures. The former compound CsB7O10(OH)2 presents a wide band gap of 6.6 eV and the latter compound CsBaB7O12 presents a band gap of 5.6 eV, which is smaller than that of CsB7O10(OH)2. The first-principles calculation results suggest that the birefringences are 0.08 and 0.05 at 1064 nm for CsB7O10(OH)2 and CsBaB7O12, respectively. Furthermore, the detailed summaries and structural comparisons have been provided for all available disorder-free mixed alkali- and alkaline-earth metal caesium borates.

Graphical abstract: Effect of anion dimensionality on optical properties: the ∞[B7O10(OH)2] layer in CsB7O10(OH)2vs. the ∞[B7O12] framework in CsBaB7O12

Supplementary files

Article information

Article type
Paper
Submitted
26 Nov 2019
Accepted
22 Dec 2019
First published
30 Dec 2019

Dalton Trans., 2020,49, 1292-1299

Effect of anion dimensionality on optical properties: the [B7O10(OH)2] layer in CsB7O10(OH)2vs. the [B7O12] framework in CsBaB7O12

Z. Miao, Y. Yang, Z. Wei, Z. Yang and S. Pan, Dalton Trans., 2020, 49, 1292 DOI: 10.1039/C9DT04539B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements