Issue 2, 2020

Copper-based redox shuttles supported by preorganized tetradentate ligands for dye-sensitized solar cells

Abstract

Three copper redox shuttles ([Cu(1)]2+/1+, [Cu(2)]2+/1+, and [Cu(3)]2+/1+) featuring tetradentate ligands were synthesized and evaluated computationally, electrochemically, and in dye-sensitized solar cell (DSC) devices using a benchmark organic dye, Y123. Neutral polyaromatic ligands with limited flexibility were targeted as a strategy to improve solar-to-electrical energy conversion by reducing voltage losses associated with redox shuttle electron transfer events. Inner-sphere electron transfer reorganization energies (λ) were computed quantum chemically and compared to the commonly used [Co(bpy)3]3+/2+ redox shuttle which has a reported λ value of 0.61 eV. The geometrically constrained biphenyl-based Cu redox shuttles investigated here have lower reorganization energies (0.34–0.53 eV) and thus can potentially operate with lower driving forces for dye regeneration (ΔGreg) in DSC devices when compared to [Co(bpy)3]3+/2+-based devices. The rigid tetradentate ligand design promotes more efficient electron transfer reactions leading to an improved JSC (14.1 mA cm−2), higher stability due to the chelate effect, and a decrease in VlossOC for one of the copper redox shuttle-based devices.

Graphical abstract: Copper-based redox shuttles supported by preorganized tetradentate ligands for dye-sensitized solar cells

Supplementary files

Article information

Article type
Paper
Submitted
14 Oct 2019
Accepted
01 Dec 2019
First published
02 Dec 2019

Dalton Trans., 2020,49, 343-355

Author version available

Copper-based redox shuttles supported by preorganized tetradentate ligands for dye-sensitized solar cells

R. R. Rodrigues, J. M. Lee, N. S. Taylor, H. Cheema, L. Chen, R. C. Fortenberry, J. H. Delcamp and J. W. Jurss, Dalton Trans., 2020, 49, 343 DOI: 10.1039/C9DT04030G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements