Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.


Issue 26, 2020
Previous Article Next Article

Mass spectrometry and computational study of collision-induced dissociation of 9-methylguanine–1-methylcytosine base-pair radical cation: intra-base-pair proton transfer and hydrogen transfer, non-statistical dissociation, and reaction with a water ligand

Author affiliations

Abstract

A combined experimental and theoretical study is presented on the collision-induced dissociation (CID) of 9-methylguanine–1-methylcytosine base-pair radical cation (abbreviated as [9MG·1MC]˙+) and its monohydrate ([9MG·1MC]˙+·H2O) with Xe and Ar gases. Product ion mass spectra were measured as a function of collision energy using guided-ion beam tandem mass spectrometry, from which cross sections and threshold energies for various dissociation pathways were determined. Electronic structure calculations were performed at the DFT, RI-MP2 and DLPNO-CCSD(T) levels of theory to identify product structures and map out reaction potential energy surfaces. [9MG·1MC]˙+ has two structures: a conventional structure 9MG˙+·1MC (population 87%) consisting of hydrogen-bonded 9-methylguanine radical cation and neutral 1-methylcytosine, and a proton-transferred structure [9MG − H]˙·[1MC + H]+ (less stable, population 13%) formed by intra-base-pair proton transfer from the N1 of 9MG˙+ to the N3 of 1MC within 9MG˙+·1MC. The two structures have similar dissociation energies but can be distinguished in that 9MG˙+·1MC dissociates into 9MG˙+ and 1MC whereas [9MG – H]˙·[1MC + H]+ dissociates into neutral [9MG – H]˙ radical and protonated [1MC + H]+. An intriguing finding is that, in both Xe- and Ar-induced CID of [9MG·1MC]˙+, product ions were overwhelmingly dominated by [1MC + H]+, which is contrary to product distributions predicted using a statistical reaction model. Monohydration of [9MG·1MC]˙+ reversed the populations of the conventional structure (43%) vs. the proton-transferred structure (57%) and induced new reactions upon collisional activation, of which intra-base-pair hydrogen transfer produced [9MG + H]+ and the reaction of the water ligand with a methyl group in [9MG·1MC]˙+ led to methanol elimination from [9MG·1MC]˙+·H2O.

Graphical abstract: Mass spectrometry and computational study of collision-induced dissociation of 9-methylguanine–1-methylcytosine base-pair radical cation: intra-base-pair proton transfer and hydrogen transfer, non-statistical dissociation, and reaction with a water ligand

Back to tab navigation

Supplementary files

Article information


Submitted
02 Apr 2020
Accepted
18 Jun 2020
First published
18 Jun 2020

Phys. Chem. Chem. Phys., 2020,22, 14875-14888
Article type
Paper

Mass spectrometry and computational study of collision-induced dissociation of 9-methylguanine–1-methylcytosine base-pair radical cation: intra-base-pair proton transfer and hydrogen transfer, non-statistical dissociation, and reaction with a water ligand

Y. Sun, M. M. Moe and J. Liu, Phys. Chem. Chem. Phys., 2020, 22, 14875
DOI: 10.1039/D0CP01788D

Social activity

Search articles by author

Spotlight

Advertisements