Issue 22, 2020

Bi-layering at ionic liquid surfaces: a sum-frequency generation vibrational spectroscopy- and molecular dynamics simulation-based study

Abstract

Room-temperature ionic liquids (RTILs) are being increasingly employed as novel solvents in several fields, including chemical engineering, electrochemistry, and synthetic chemistry. To further increase their usage potential, a better understanding of the structure of their surface layer is essential. Bi-layering at the surfaces of RTILs consisting of 1-alkyl-3-methylimidazolium ([Cnmim]+; n = 4, 6, 8, 10, and 12) cations and bis(trifluoromethanesulfonyl)amide ([TFSA]) anions was demonstrated via infrared-visible sum-frequency generation (IV-SFG) vibrational spectroscopy and molecular dynamics (MD) simulations. It was found that the sum-frequency (SF) signal from the [TFSA] anions decreases as the alkyl chain length increases, whereas the SF signal from the r+ mode (the terminal CH3 group) of the [Cnmim]+ cations is almost the same regardless of chain length. MD simulations show the formation of a bi-layered structure consisting of the outermost first layer and a submerged second layer in a “head-to-head” molecular arrangement. The decrease in the SF signals of the normal modes of the [TFSA] anions is caused by destructive and out-of-phase interference of vibrations of corresponding molecular moieties oriented toward each other in the first and second layers. In contrast, the r+ mode of [Cnmim]+ does not experience destructive interference because the peak position of the r+ mode differs marginally at the surface and in the bulk. Our conclusions are not limited to the system presented here. Similar bi-layered structures can be expected for the surfaces of conventional RTILs, which necessitates the consideration of bi-layering in the design and application.

Graphical abstract: Bi-layering at ionic liquid surfaces: a sum-frequency generation vibrational spectroscopy- and molecular dynamics simulation-based study

Associated articles

Supplementary files

Article information

Article type
Paper
Submitted
04 Mar 2020
Accepted
19 May 2020
First published
19 May 2020

Phys. Chem. Chem. Phys., 2020,22, 12565-12576

Bi-layering at ionic liquid surfaces: a sum-frequency generation vibrational spectroscopy- and molecular dynamics simulation-based study

T. Iwahashi, T. Ishiyama, Y. Sakai, A. Morita, D. Kim and Y. Ouchi, Phys. Chem. Chem. Phys., 2020, 22, 12565 DOI: 10.1039/D0CP01219J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements