Jump to main content
Jump to site search

Issue 3, 2020
Previous Article Next Article

Nanostructure domains, voids, and low-frequency spectra in binary mixtures of N,N-dimethylacetamide and ionic liquids with varying cationic size

Author affiliations

Abstract

Classical molecular dynamics (MD) simulations were carried out on binary mixtures of N,N-dimethylacetamide (DMA) with hydroxide based ammonium ionic liquids (ILs), tetraethylammonium hydroxide (TEAH), tetrapropylammonium hydroxide (TPAH), tetrabutylammonium hydroxide (TBAH), at three different mole fractions of IL (XIL). The solvation of DMA molecules by ions of ILs was studied by the combined distribution function (CDF). CDFs show that anions have strong correlations with the DMA due to the hydrogen bonding. Increasing the DMA disrupts the nanosegregated domains and causes changes in correlations of cation–DMA and anion–DMA. Also, increased translational motion of ions, as well as the fluidity of IL and a significant improvement in self-diffusion coefficients, are observed with the presence of more DMA. The structural microheterogeneity was investigated using the Voronoi tessellation method. Domain analysis confirms the formation of discreet domains by anions at all the mole fractions. The results also complement the experimental observations, which suggest that two types of aggregations are possible in given mixtures: below and above 0.5 XIL. When the alkyl chain length on the cation increases, a notable decrease in ion translational motion was observed in the IL rich region. In the concentrated IL mixture, the self-diffusion coefficient of the cation is higher than that of the corresponding anion; further addition of IL (XIL < 0.5) results in weaker interactions between DMA and anion when compared to DMA–cation. The mean collision time of each species is found to have an inverse relation with XIL. The analysis of the vibrational density of states provides the low-frequency spectral feature of the mixtures.

Graphical abstract: Nanostructure domains, voids, and low-frequency spectra in binary mixtures of N,N-dimethylacetamide and ionic liquids with varying cationic size

Back to tab navigation

Supplementary files

Article information


Submitted
01 Nov 2019
Accepted
23 Dec 2019
First published
08 Jan 2020

This article is Open Access

RSC Adv., 2020,10, 1811-1827
Article type
Paper

Nanostructure domains, voids, and low-frequency spectra in binary mixtures of N,N-dimethylacetamide and ionic liquids with varying cationic size

Th. D. N. Reddy and B. S. Mallik, RSC Adv., 2020, 10, 1811
DOI: 10.1039/C9RA09041J

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

Reproduced material should be attributed as follows:

  • For reproduction of material from NJC:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
  • For reproduction of material from PCCP:
    [Original citation] - Published by the PCCP Owner Societies.
  • For reproduction of material from PPS:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
  • For reproduction of material from all other RSC journals:
    [Original citation] - Published by The Royal Society of Chemistry.

Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.


Social activity

Search articles by author

Spotlight

Advertisements