Jump to main content
Jump to site search
SCHEDULED MAINTENANCE Close the message box

Maintenance work is planned for Monday 16 August 2021 from 07:00 to 23:59 (BST).

Website performance may be temporarily affected and you may not be able to access some PDFs or images. If this does happen, refreshing your web browser should resolve the issue. We apologise for any inconvenience this might cause and thank you for your patience.


Issue 12, 2020

Analytical van der Waals interaction potential for faceted nanoparticles

Author affiliations

Abstract

Our ability to synthesize faceted nanoparticles of tunable shapes and sizes has opened up many intriguing applications of such particles. However, our progress in understanding, modeling, and simulating their collective rheology, phase behavior, and self-assembly has been hindered by the lack of analytical interparticle interaction potentials. Here, we present one of the first analytical models for the van der Waals interaction energy between faceted nanoparticles. The model was derived through various approximations that reduce the usual six-dimensional integral over particle volumes to a series of two-dimensional integrals over particle interaction areas with closed-form solutions. Comparison and analyses of energies obtained from the analytical model with those computed from exact atomistic calculations show that the model approximations lead to insignificant errors in predicted energies across all relevant particle configurations. We demonstrate that the model yields accurate energies for diverse particle shapes including nanocubes, triangular prisms, faceted rods, and square pyramids, while yielding many orders of magnitude improvement in computational efficiency compared to atomistic calculations. To make the model more accessible and to demonstrate its applicability, an open-source graphical user interface application implementing the model for nanocubes in arbitrary configurations has been developed. We expect that the analytical model will accelerate future investigations of faceted nanoparticles that require accurate calculation of interparticle interactions.

Graphical abstract: Analytical van der Waals interaction potential for faceted nanoparticles

Supplementary files

Article information


Submitted
04 Sep 2020
Accepted
30 Oct 2020
First published
30 Oct 2020

Nanoscale Horiz., 2020,5, 1628-1642
Article type
Communication

Analytical van der Waals interaction potential for faceted nanoparticles

B. H. Lee and G. Arya, Nanoscale Horiz., 2020, 5, 1628 DOI: 10.1039/D0NH00526F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.


Social activity

Search articles by author

Spotlight

Advertisements