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New Concept Statement

There is tremendous interest in understanding the interaction forces acting between faceted 
nanoparticles because of their ability to self-assemble into novel higher-order architectures with 
unique optical and mechanical properties. One of the most fundamental components of such 
interactions acting between nanoparticles is the van der Waals (vdW) forces. While vdW forces 
can be rapidly calculated using analytical models for simple and symmetric particle geometries, 
no such models exist for faceted particles. In this work, we develop the first analytical model for 
the vdW interaction potential between faceted nanoparticles. The model was derived by 
reducing the usual six-dimensional integral over particle volumes to a series of two-dimensional 
integrals over particle interaction areas with closed-form solutions. The model can accurately 
capture the vdW energy landscape of diverse particle shapes, while yielding many orders of 
magnitude improvement in computational efficiency compared to brute-force atomistic 
calculations. The model's accuracy, efficiency, and ease of implementation will allow 
researchers to rapidly explore vdW energy landscapes of faceted nanoparticles and enable 
many future investigations on the rheology, phase behavior, and self-assembly of such particles 
through simulations that have so far been impeded by the prohibitive costs of accurately 
evaluating vdW energies.
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Abstract

Our ability to synthesize faceted nanoparticles of tunable shapes and sizes has

opened up many intriguing applications of such particles. However, our progress in

understanding, modeling, and simulating their collective rheology, phase behavior, and

self-assembly has been hindered by the lack of analytical interparticle interaction po-

tentials. Here, we present one of the first analytical models for the van der Waals

interaction energy between faceted nanoparticles. The model was derived through

various approximations that reduce the usual six-dimensional integral over particle

volumes to a series of two-dimensional integrals over particle interaction areas with

closed-form solutions. Comparison and analyses of energies obtained from the analyti-

cal model with those computed from exact atomistic calculations show that the model

approximations lead to insignificant errors in predicted energies across all relevant

particle configurations. We demonstrate that the model yields accurate energies for di-

verse particle shapes including nanocubes, triangular prisms, faceted rods, and square

pyramids, while yielding many orders of magnitude improvement in computational ef-

ficiency compared to atomistic calculations. To make the model more accessible and

to demonstrate its applicability, an open-source graphical user interface application

implementing the model for nanocubes in arbitrary configurations has been developed.

We expect that the analytical model will accelerate future investigations of faceted

nanoparticles that require accurate calculation of interparticle interactions.
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INTRODUCTION

Advancements in solution-based synthesis techniques have enabled researchers to produce

faceted nanoparticles (NPs) of various shapes and sizes.1,2 Because of their sharp edges and

flat surfaces, faceted NPs exhibit useful properties such as enhanced catalytic activity,3,4

improved cellular uptake,5–7 and unusual plasmonic resonances.8,9 In addition, faceted NPs

can be used as building blocks for assembly of particle clusters and superlattices with new

and complex arrangements that cannot be achieved by spherical NPs. Such assembled states

of NPs could have potential applications in plasmonics,10–12 metamaterials,13–15 chiroptical

sensors,16,17 photovoltaics,18,19 and quantum-dot solids.20,21 A key quantity that determines

the morphology of structures formed by NPs is their pairwise interaction potential energy,

and one of the most fundamental component of interparticle interactions is the van der

Waals (vdW) forces. These forces are almost always attractive and arise from the dipole-

dipole interactions acting between atoms across NPs. In general, vdW forces encompass not

only interactions between instantaneous dipoles and induced dipoles, but also interactions

between permanent dipoles and between permanent dipoles and induced dipoles. In some

definitions, vdW forces also include the short-range repulsion arising from Pauli exclusion

principle, which prevents atoms and particles from overlapping. Though vdW interactions

are much weaker than covalent, ionic, or metallic bonds and typically have a shorter range

than charge-charge interactions, they are ubiquitous as they act across all atomic species. As

a result, the collective vdW interactions between NPs can become substantial (� thermal

energy kBT ) and are often the main driving force for particle assembly and aggregation.

A common approach for calculating the vdW interaction energy UvdW between two NPs

involves summing up vdW energies contributed by all pairs of atoms interacting across the

two particles, as given by UvdW =
∑N

i=1

∑N
j=1 ULJ(rij). Here, rij is the distance between

atoms i and j on separate NPs and N is the number of atoms in each NP, assumed to be

identical here. The pairwise interactions are usually treated using the Lennard-Jones (LJ)

potential ULJ = 4ε[(σ/r)12 − (σ/r)6], in which σ represents the atomic size, the first term
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accounts for the attractive vdW interactions due to dipoles, and the second term empirically

models the electron-electron repulsion due to Pauli exclusion principle. The interaction en-

ergy parameter ε can be related to the Hamaker constant obtained from experiments22,23

or from Lifshitz theory.24 While such “atomistic summation” approach does not properly

account for retardation and many-body effects, it provides a straightforward means to cal-

culating vdW interactions between NPs of arbitrary shapes. However, because NPs contain

many atoms (N ∼ 104 to 108) and each vdW energy calculation requires O(N2) LJ energy

evaluations, this approach becomes computationally expensive for exploring energy land-

scapes of NPs, where energy needs to be computed as a function of particle position and

orientation, and prohibitive for simulations, where interactions between NPs need to com-

puted over hundreds of particles and millions of time steps. For this reason, researchers

have attempted to obtain analytical solutions to UvdW by replacing the summation over in-

teratomic LJ interactions with an integral of the LJ potential over the volumes V1 and V2

of the interacting NPs, that is, UvdW ≈ ρ2
∫
V1

∫
V2
ULJ(rij) dV1 dV2, where ρ is the number

density of atoms in the NPs.25 For spherical particles, this integral can be solved exactly

by taking advantage of the geometric symmetry of the particles.26 Analytic solutions also

exist for other simple and symmetric shapes such as spherical shells, parallel flat surfaces,

and parallel cylinders in close proximity.25,27 However, no such closed-form solutions exist

for vdW interactions between faceted NPs whose asymmetric shape and finite span along

each dimension render the above integral analytically intractable.

Because of the lack of analytic expressions for vdW interactions between faceted NPs,

simulation studies using accurate descriptions of UvdW via atomistic summation have been

limited to small system sizes.28,29 For larger systems, researchers have resorted to approxi-

mate descriptions of UvdW to reduce the computational cost. For instance, the NPs could

be constructed out of much fewer coarse beads, each intended to represent a large group of

atoms.30,31 However, the vdW energy, including its distance and orientational dependence,

obtained by summing over interbead LJ interactions across the NPs can differ significantly
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from that obtained from atomistic summation. In many cases, researchers choose to neglect

attractive vdW interactions altogether,32–36 retaining only the excluded-volume interactions,

which can be more efficiently implemented by using algorithms that check for geometric over-

laps between NPs37,38 or by representing NPs using shells of short-range repulsive beads.39,40

While approximating or neglecting vdW interactions between particles may be acceptable

for exploring granular packing in macroscopic particles or for studying entropy-driven crys-

tallization of NPs, a proper and accurate description of vdW interactions between faceted

NPs is necessary for studying their self-assembly and phase behavior, as evident from past

work on spherical NPs.41–45 Hence, there is tremendous interest in accurately and efficiently

accounting for vdW interactions in studies involving faceted NPs.

Here we present the first analytical model for calculating the vdW interactions energy

between faceted NPs. The model was achieved by discretizing the volume of one of the NPs

into parallel rods and deriving a simplified potential for the vdW interactions between a rod

and a NP, allowing us to convert the usual vdW integral of interatomic potential over particle

volumes into a series of analytically solvable area integrals of the rod-NP potential over the

interacting facets of the NP. The resulting expressions are able to accurately describe the full

vdW energy landscape for a range of faceted NPs, including cubes, triangular prisms, faceted

rods, and square pyramids. The analytical model can be easily coded into computational

routines, and as demonstration we provide an open-source graphical user interface application

for calculating the vdW energy of nanocubes in arbitrary configurations. The accuracy

and computational efficiency of the analytical model developed here should enable a range

of simulation studies on the rheology, self-assembly, and phase behavior of faceted NPs,

previously found to be computationally prohibitive.

RESULTS

Model Development. Our approach for deriving analytical vdW potentials for faceted

particle, using nanocubes as the example, is summarized in Fig. 1. Given two NPs in
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arbitrary orientations (Fig. 1a), we first transform the coordinate frame of reference so that

one particle (P1) is at the origin with one of its faces denoted by F1 oriented perpendicular

to the x-axis as shown in Fig. 1b. The configuration R of this two-particle system is then

fully described by the position vector and orientation of the other particle (P2). Next, we

discretize the volume of P2 into a collection of parallel rod elements oriented normal to the

interacting face of P1 as depicted in Fig. 1c. (Henceforth, we use the term “interacting face”

to refer to all facets of P1 and P2 that face each other.) The rods are characterized by their

length bx, separation distance dx from P1, and lateral position in the y and z directions. The

rod separation distance and length are both functions of their lateral position and particle

configuration, that is, dx ≡ dx(y, z;R) and bx ≡ bx(y, z;R).

Consider now that each rod has a cross-section so small that it contains a single line of

atoms of size σ. If the vdW interaction energy between a rod and P1 can be described by

an interaction potential Urod ≡ Urod(y, z, dx, bx), then the total vdW energy of interaction

UvdW ≡ UvdW(R) between the two particles can be written as an area integral of this potential

over the entire projected area of P2 (onto the y-z plane) denoted by A2:

UvdW = γ

∫∫
(y,z)∈A2

Urod (y, z, dx, bx) dz dy, (1)

where γ is the area density of the rods (equal to σ−2 if the rods are arranged in a square

lattice). The above integral is however too complex to yield a closed-form solution, as Urod

is a function of not only y and z, but also dx and bx, which are also both functions of y

and z. The integration limits, which themselves are functions of y and z for most particle

configurations, further complicate the process of obtaining an analytical solution.

To obtain an analytical solution for UvdW, we simplify the integrand and limits in Eq. 1

through approximations based on observations that are described and justified in more detail

later. Briefly, the first observation is that the rods whose y-z projections fall outside the

boundary of F1 contribute negligibly to UvdW, an effect that arises due to the short-ranged

6
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Figure 1: Derivation of analytical vdW potential for faceted NPs. (a) Schematic of cubes
P1 and P2 in arbitrary configuration. (b) Coordinate transformation into P1’s frame of
reference. (c) Segmentation of P2 into rods. (d) Rods outside the y-z boundaries of P1’s
interacting face (F1) are discarded. (e) vdW interaction energy is given by the summation
of Urod. (f) Each rod is assumed to be of length D and to be facing the center of F1. In
(a)–(f), U(◦) denotes potential energy of item ◦. (g) y-z projection of F1 and the three
interacting faces of P2 denoted by F1, F2, and F3. The three vertices defining the F1 plane
are labeled v1–v3. (h) Segmentation of F1 into four regions r1–r4 in which the z integral
limits can be expressed as linear functions of y; integration limits for only r1 and r3 are
shown for illustration. (i) Power-law fits to the repulsive and attractive portions of the rod
potential for D = 50σ nanocubes. Inset shows zoomed view of the long-ranged attraction.
Symbols represent energies from atomistic summation and solid lines represent fits.
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nature of the interatomic vdW potential. This allows us to discard integration over such

rods that fall outside F1’s boundaries (Fig. 1d,e), which simplifies the integration limits in

Eq. 1. For instance, both the y and z integration limits for nanocubes in the configuration

shown in the figure are simply given by −D/2 and D/2, where D is the edge length of the

cube. The second observation is that the interaction energy Urod is insensitive to both the

length of the rods beyond a cutoff length smaller than D and the lateral position of the rods

except those outside F1’s boundary. Consequently, the vdW energy contributed by a rod

of length bx whose P1-proximal end is located at (dx, y, z) can be approximated as equal to

that of a rod of length D located at the origin of the y-z axes, (dx, 0, 0) (see Fig. 1f). This

then allows us to eliminate Urod’s dependency on y, z, and bx without much loss in accuracy,

making Urod solely a function of separation distance dx(y, z). These approximations help

convert the original integral in Eq. 1 into a more manageable form:

UvdW = γ

∫∫
(y,z)∈F1

Urod(dx(y, z)) dz dy. (2)

The last observation is that as in the case of vdW interactions between macroscopic bodies,25

the attractive and repulsive portions of the rod-NP interaction energy arising from dipole-

dipole interactions and Pauli exclusion principle can each be approximated by power-law

functions:

Urod =
∑
ν

Cν (σ/dx)
nν , (3)

where Cν are constants describing the strengths of each interaction component and nν are

exponents that describe how rapidly these components decay with separation distances.

Given that both particles are faceted, the distance dx between the two interacting facets

is always a linear function of y and z as given by

dx = c1y + c2z + c3 (4)
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c1 =
(xv2 − xv1)(zv3 − zv1)− (zv2 − zv1)(xv3 − xv1)
(yv2 − yv1)(zv3 − zv1)− (zv2 − zv1)(yv3 − yv1)

,

c2 =
(yv2 − yv1)(xv3 − xv1)− (xv2 − xv1)(yv3 − yv1)
(yv2 − yv1)(zv3 − zv1)− (zv2 − zv1)(yv3 − yv1)

,

c3 = xv1 −
D

2
+ σ − c1yv1 − c2zv1,

where xvi, yvi, and zvi (i = 1, 2, and 3) are the x, y, and z coordinates of the vertices of an

interacting facet of P2, with v1 representing the vertex closest to the P1 face and v2 and v3

the adjacent vertices (see Fig. 1g). This equation is derived in Supporting Information.

While this simple linear form of dx and the power-law form of Urod make Eq. (2) always

analytically solvable, two geometrical aspects of the system require the integral to be solved

in a piecewise manner. First, the function dx(y, z) is different for each interacting face of P2,

where there could be up to three such facets depending on particle position and orientation.

Second, the y and z integration limits for each facet, which are not constants but functions

of each other, need to be defined in a way that yields an analytical solution to the integral

Eq. (2). Therefore, we segment the area integral into multiple regions r in which the y

integral limits are constants and the z integral limits are linear functions of y. For two

interacting cubes, we first define the intersection area of the y-z projections of P1 and P2

faces as depicted by the shaded regions in Fig. 1g. Then, we divide the intersection area from

each face of P2 into separate regions at all y positions where the z integral limits change

their dependency on y, for example, at vertex positions where the edges change their slope

(Fig. 1h). This choice makes Eq. (2) analytically solvable and the region definition process

can be automated into a computational routine. The final form of the vdW energy integral

for each region r and rod interaction component ν is then given by

U ν,r
vdW = γ Cν

∫ yr,2

yr,1

∫ zr,2(y)

zr,1(y)

( σ

dr,x(y, z)

)nν
dz dy, (5)

where yr,1, yr,2, zr,1(y) = br,1y + ar,1, and zr,2(y) = br,2y + ar,2 represent the integral limits of

a region r, and the total vdW interaction energy between the two NPs is given by UvdW =

9
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Table 1: Analytical solution of U ν,r
vdW for all four types of facet orientations.

Orientation Solution∗

dr,x ≡ dr,x(y, z)
γ Cν σnν

cr,2(nν−1)(nν−2)
∑2

i=1

∑2
j=1

(−1)i+j [ar,jcr,2+cr,3+(cr,1+br,jcr,2)yr,i]
2−nν

(cr,1+br,jcr,2)

dr,x ≡ dr,x(y) γ Cν σnν

c2r,1(nν−1)(nν−2)
∑2

i=1
(−1)i[cr,1(ar,1−ar,2)(nν−2)+(br,1−br,2)(cr,3+cr,1yr,i(nν−1))]

(cr,1yr,i+cr,3)nν−1

dr,x ≡ dr,x(z) γ Cν σnν

c2r,2(nν−1)
∑2

i=1

∑2
j=1

(−1)i+j [ar,jcr,2+cr,3+br,jcr,2yr,i]nν−2

br,j(2−nν)

constant dr,x
γ Cν σnν

cnνr,3
(yr,1 − yr,2) [(yr,1 + yr,2)(br,1 − br,2) + 2(ar,1 + ar,2)]

∗Analytical solutions for special cases in which the denominators of these expressions are
zero whereupon the expressions become undefined are provided in Supporting Information.

∑
ν

∑
r U

ν,r
vdW. The analytical solution to this integral depends on the particle orientations as

dr,x of a region may or may not be a function of both y and z. For example, parallel facets

lead to a constant dr,x while their rotation about axes parallel to the y- and z-axis leads to

dr,x ≡ dr,x(z) and dr,x ≡ dr,x(y), respectively. Table 1 provides the analytical solutions to

the general case in which dr,x is a function of both y and z and to these three special cases.

We refer readers to Supporting Information for complete derivation of these solutions.

The last remaining task involves establishing suitable values of the unknown parameters

Cν and nν that describe the strength and distance scaling of the attractive and repulsive

portions of the rod potential Urod (Eq. 3). To obtain these parameters, we attempted power-

law fits to the distance dx-dependent vdW interaction energies computed between a rod and

a NP (of similar dimension D) using atomistic descriptions of the two bodies. In particular,

the NP was modeled as a simple-cubic lattice of atoms of size and lattice spacing σ, the rod

was modeled as a linear array of atoms of same size and spacing, and the interaction energy

Urod was obtained by summing the interatomic LJ potential with parameters σ and ε across

all atoms of the rod and NP. For fitting purposes, we decomposed Urod into attractive and

repulsive contributions Uatt and Urep arising from the two terms in the LJ potential.

Figure 1i presents Urod(dx), Uatt(dx), and Urep(dx) plots computed for a representative
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Table 2: Power law coefficients and exponents of the rod potential.

Shape D(σ) Catt1(ε) natt1 Catt2(ε) natt2 Crep(ε) nrep

Cube 25 −7.76 3.45 −5.87 3.00 3.86 10.66
Cube 50 −7.76 3.43 −4.65 2.72 3.86 10.66
Cube 75 −7.76 3.43 −4.03 2.58 3.86 10.66
Cube 100 −7.76 3.43 −3.65 2.50 3.86 10.66
Triangular prism 50 −7.76 3.44 −4.69 2.73 3.86 10.66
Square rod 50 −7.75 3.44 −4.61 2.71 3.86 10.66
Square pyramid 50 −7.76 3.44 −4.72 2.74 3.86 10.67

nanocube of edge length D = 50σ (which corresponds to a particle of size ∼17 nm if it were

made of metal atoms typically of size 3.4 Å) along with power-law fits to the attractive and

repulsive energies. The energies and fits for other cube sizes (D = 25σ, 75σ, and 100σ) are

provided in Fig. S2. The repulsive vdW interactions for all four systems could be fitted by a

single power-law (Table 2). The attractive vdW energies, however, could not be fitted using

a single power-law, but separating the interactions into a short-range portion Uatt1(dx ≤ dcut)

and a long-range portion Uatt2(dx > dcut) using dcut = 2σ allowed accurate fits using two

separate power laws for all studied NPs. The obtained fit parameters, as listed in Table 2,

show that the short-range portions exhibit nearly identical scalings for all nanocubes, but

the long-range portions displayed some dependence on particle size. These results suggest

that the rod potential needs to be treated as a piecewise continuous function:

Urod(dx) =


Uatt1(dx) + Urep(dx)− Uatt1(dcut)− Urep(dcut) + Uatt2(dcut), dx ≤ dcut

Uatt2(dx), dx > dcut,

(6)

where −Uatt1(dcut) − Urep(dcut) + Uatt2(dcut) was added for dx ≤ dcut to make the energies

continuous. We set Urep = 0 for dx > dcut, as the repulsive portion decays to negligible

values (� ε) before reaching the cutoff distance dcut. The results also suggest that the rod

potential needs to be re-parameterized for each NP size. We also found that the parameters

remain roughly similar for other particle shapes (triangular prisms, square rods, and square

pyramids) as long as their overall sizes are comparable (Table 2).
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Model Predictions and Accuracy. To evaluate the accuracy of our analytical model, we

compared its energy predictions for a range of NP shapes and sizes to energies computed

atomistically via summation of interatomic LJ interactions. For a two-particle system, the

energy landscape can be conveniently described in terms of the position and orientation of

one NP (P2) relative to the other (P1) in a coordinate frame in which one of P1’s faces (F1)

points in the +x direction (as in Fig. 1b). The orientation of P2 was described using 3 Euler

angles (φ, θ, ψ) and its position was described using 3 Cartesian coordinates (ds, dy, dz). We

chose to define P2’s position not by its center of mass but by its vertex closest to F1, with ds

denoting the distance of this vertex from F1 and dy and dz representing the vertex’s lateral

offset from the edges of F1. Hence, ds represents the closest separation distance between the

two NPs, wherein ds = 0 signifies contact. Using this set of coordinates, we sought to assess

the ability of our model to capture the entire vdW energy landscape, especially its distance

dependence UvdW(ds) for arbitrary NP configurations (dy, dz, φ, θ, ψ).

50σ nanocubes. We first examined UvdW(ds) for parallel configurations (φ = θ = ψ = 0◦)

of D = 50σ nanocubes exhibiting different lateral offsets dy and dz. The results plotted in

Fig. 2a show that the model accurately captures the vdW energy profiles computed from

atomistic summation. Importantly, the model is able to replicate the location and depth

of the energy minimum, the sharpness of the repulsion at short distances, and the long-

ranged nature of the attraction. To further assess the model’s accuracy, we calculated the

energies for an ensemble of configurations spanning the entire range of dy and dz values

at two distances ds = 1σ and 5σ representative of short- and long-ranged interactions.

The obtained UvdW(dy, dz) landscapes also revealed excellent agreement between model and

atomistic summation (Fig. 2b,c). Interestingly, the energies vary almost linearly with the

projected overlap area between nanocubes given by dy×dz. This is more apparent in Fig. 2a

where the fully-overlapped configuration (dy = dz = D) has an energy roughly two and four

times larger than those with half (dy = D/2, dz = D) and one-fourth (dy = dz = D/2)

of their surfaces overlapping. Since our analytical model involves an area integral over the

12
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Figure 2: Comparison of vdW energies calculated from the model (solid lines or surfaces)
and atomistic summation (symbols) for D = 50σ nanocubes. The plots correspond to results
for: (a–c) parallel, (d–f) tilted coplanar, and (g–i) general configurations. Insets show long-
ranged energies.

interacting regions, the model describes this linear dependence accurately.

Next, we examined tilted coplanar configurations, where nanocubes lie flat on a plane

and translate and rotate only within that plane, configurations relevant to particles confined

in thin films or those deposited on flat substrates.10,28 Such configurations are characterized

by the separation distance ds between nanocubes, their lateral offset dy, and their tilt angle

13

Page 14 of 38Nanoscale Horizons



φ, assuming that particles lie flat on the x-y plane (θ = ψ = 0◦, dz = D). Figure 2d-f presents

model predictions for UvdW(ds) at representative dy and φ values and for UvdW(dy, φ) at the

two representative ds values considered above. We find that the model is able to quantita-

tively capture the distance dependence of the vdW energy and its dependence on the relative

offset and tilt for these nanocube configurations. The UvdW(dy, φ) landscapes also reveal that

the vdW energy rises with increasing dy, as expected, but unlike the linear dependence ob-

served for parallel configurations, the energies for tilted cubes display increasingly weaker

dependence on dy with increasing φ. The reason is that the larger the φ, the more the

total energy is dominated by the interactions mediated by the leading edge of P2 (closest to

P1) which are unaffected by changes in φ at fixed ds. The landscapes also show the energy

decreasing more sharply with increasing φ at smaller φ than larger φ. This effect may be

explained by considering the incremental change in vdW interactions mediated by a rod

element on P2 (any rod not associated with the closest vertex) that moves away from P1 by

a small distance due to a small increase in angle φ. Because Urod(dx) decays more sharply

at smaller distances, rods that are located closer to P1 at small φ will incur a sharper drop

in vdW interactions compared to those further away at large φ. Both of these effects are

accurately captured by the analytical model.

Lastly, we tested our model for the more general case wherein nanocubes are able to rotate

or translate along all six degrees of freedom. Given the enormity of this configurational

space, we chose to focus on configurations with φ = θ = ψ and dz = 0.5D as we found

these to be general enough to capture the model’s accuracy for any configuration. UvdW(ds)

plotted for several representative orientations in Fig. 2g shows that the model can accurately

describe the depth of the energy minimum and the long-range interactions. However, the

location of the repulsive barrier at small distances is slightly overpredicted at large φ. This

is because the model treats NPs as macroscopic bodies with flat surfaces while the actual

particles have atomically corrugated surfaces that may allow closer separation distances, as

P2’s leading vertex could be accommodated within the atomic interstices of P1’s interacting
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face. This discrepancy in barrier location is however smaller than 0.1σ, so quite negligible.

The model also reproduces well the atomistically computed UvdW(dy, φ) landscapes at small

and large separation distances (Fig. 2h,i). Similar to coplanar configurations, the energies

for these general configurations also vary highly nonlinearly with the relative offset and tilt

of the nanocubes, and the model is again able to quantitatively capture all these variations

spanning at least three orders of magnitude in energy.

Error analysis. To more thoroughly analyze the model’s accuracy for the above nanocubes,

we evaluated the prediction error for a wide range of parallel, tilted coplanar, and general

configurations, as shown in Fig. 3. Each data point in the figure corresponds to the collective

error
∑
|Umodel −Uatomistic|/

∑
|Uatomistic| in the predicted energies of all configurations with

that specified coordinate value, where Umodel and Uatomistic are the energies calculated by

the model and by atomistic summation. For example, the data point marked with a blue

square in Fig. 3g represents the collective error in the energy of all general configurations

(0 < dy ≤ D and 0◦ < φ ≤ 45◦) with ds = 11σ. We have computed these errors with respect

to ds, dy, and dz for parallel configurations, and ds, dy, and φ with fixed dz of D and 0.5D

for the coplanar and the general configurations, respectively. To exclude configurations with

negligible interactions, we only considered those with Uatomistic > 3ε. By analyzing the error

associated with each coordinate in this manner, we were able examine the strengths and

weaknesses of the model for particular types of configurations.

Our results demonstrate that the model is accurate for most configurations and the

errors are generally less than 15%. The largest errors are observed for parallel configuration

of nanocubes interacting with their edges (dy or dz ≈ 0) or interacting at large separation

distances (ds > 10σ), and for strongly tilted configurations of nanocubes interacting via

vertex-edge contacts (φ > 40◦). These larger errors arise due to two factors. First, the

magnitude of the energy for these configurations are generally much smaller than for the

nanocubes interacting with small ds, small φ, or large dy or dz. For instance, the average

energy of parallel configurations at ds = 1.5σ is equal to 1140ε while those at ds = 10σ exhibit
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Figure 3: Collective errors of all configurations with the specified coordinate value for (a–
c) parallel, (d–f) coplanar, and (g–i) general configurations. Depicted NPs in each plot
indicate the configuration with the largest individual errors among all configurations sharing
the specified coordinate value. See main text for discussion on the blue box in (g).

an energy of only 9ε. Therefore, even small differences between Umodel and Uatomistic will result

in large percentage errors for configurations with large ds. Second, several assumptions of

our model become less valid for these configurations. For instance, we assumed that all rods

making up particle P2, even those facing P1’s edges, interact with particle P1 as if they were

facing its center. For the configurations with dy or dz ≈ 0, the interaction energies between

the particles are dominated by the energies of the edges and our assumption could lead to

errors in such cases.
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Although these results point out certain weaknesses of the analytical model due to its

assumptions, it is noteworthy that all of the configurations with large individual errors are

those in which the particles are interacting very weakly. In fact, almost all configurations

of nanocubes with the largest individual percentage errors had |Uatomistic| < 4ε. Therefore,

we can conclude that while our model may deviate from atomistic energy calculations for

some weakly interacting configurations, the model is accurate for most configurations and

especially for those with significant interaction strengths.

Other particle sizes and shapes. To demonstrate that the model is applicable to a

wide range of particle sizes, we evaluated the model’s accuracy for three additional sizes

of nanocubes: D = 25σ, 75σ, and 100σ. We used the power-law parameters listed in Table 2

to make energy predictions for these new systems. Our results for the face-face configuration

(dy = dz = D,φ = θ = ψ = 0◦) are presented in Fig. 4a; the results for other configurations

are provided in Fig. S3. We observe that the analytical model accurately predicts both

short and long-ranged interaction energies for all three nanocubes, with the energies scaling

roughly proportional to the interaction area for parallel configurations. As the sizes of these

nanocubes range from ∼9 nm to ∼34 nm in physical units (if one assumed metallic NPs with

σ ∼ 3.4 Å), these results demonstrate that the model is directly applicable to experimentally

relevant NP sizes.46–48

We finally investigated the ability of our model to describe the vdW interactions between

other types of faceted NPs. For this purpose, we examined triangular prisms (of dimensions

50σ×50σ×70.7σ), square rods (50σ×50σ×500σ), and square pyramids (50σ×50σ×50σ), as

shown in Fig. 4b. These particular NP shapes were chosen as they have been extensively ex-

plored in the literature for studying packing behavior and self-assembly,49–51 and for creating

devices with unique plasmonic52,53 and chiroptical properties.54,55 We restricted our analysis

to particle configurations most relevant to their application, namely, tilted coplanar configu-

rations for triangular prisms (that yield distance- and angle-dependent plasmonic hotspots),

twisted configurations for square rods (used for chiroptical sensing), and face-tip configura-
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Figure 4: Comparison of vdW energies obtained from the model (solid lines) and atomistic
summation (symbols) for different-sized nanocubes and other NP shapes. (a) Energies of
nanocubes of varying sizes in face-face configuration. Inset shows long-ranged energies. (b)
Schematics of the three additional NP shapes studied. Energies of (c) triangular prisms in
coplanar configuration at varying slant angle, (d) parallel rods at varying dihedral angles,
and (e) square pyramids in tip-face configurations at varying orientations.

tions for square pyramids (commonly observed during assembly and packing). Figure 4c-e

presents representative UvdW(ds) for the three NP shapes in various configurations calculated

using the parameters listed in Table 2. We observe that for all three NPs our model accu-

rately reproduces the distance and orientation dependence of the vdW energies obtained from

atomistic summation. The model’s accuracy is especially reassuring for triangular prism and

square pyramid configurations exhibiting small tilt angles θ that most strongly challenge the

fixed rod-length approximation in our model. For these configurations, rod elements at the
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leading edge (in case of triangular prisms) or leading vertex (square pyramids) of P2 are

actually only a single atom long. This indicates that our rod-length approximation may not

be as erroneous as it appears at first glance. For parallel rods, the variation in vdW energy

with twist angle was found to match the variation in surface area of interaction with angle,

which also our model predicted very well. Taken together, our results demonstrate that our

analytical model is applicable to faceted NPs of various shapes and sizes.

Analysis of Model Assumptions. In deriving our analytical model for vdW interac-

tion energies between faceted NPs, we made the following four assumptions: (1) all rod

elements irrespective of their lateral position are of length equal to the characteristic size of

the NP (rod length approximation); (2) each rod element irrespective of its lateral position

contributes an interaction energy equal to that of a rod facing the center of reference particle

P1 (edge approximation); (3) energies from all rod elements that are not within the boundary

of the interacting face of P1 in the y-z axes are ignored (cutoff assumption); and the rod-

NP interaction pontential Urod can be described by power-law functions of fixed coefficients

and exponents (power-law approximation). Despite these assumptions, we found that the

analytical model provides remarkably accurate predictions for the vdW interaction energy

between nanocubes in almost every possible configuration. The model also makes accurate

predictions for other faceted particles like rods, prisms and pyramids in relevant configura-

tions. Thus, several of the model assumptions, which appear to become worse with tilted

configurations of nanocubes and glancing tip-face configurations of prisms and pyramids, do

not lead to significant errors in net energy.

Rod length, edge, and cutoff assumptions. To understand in depth how these assumptions

affect the accuracy of energy predictions, we first examined their validity at the level of rod-

NP interactions by evaluating the LJ energies contributed by individual atoms of a D = 15σ

nanocube and a rod of same length facing the nanocube’s center at varying distances dx.

We chose a small NP for analysis, as it allowed better visualization of atomic energies. The

results of our analysis are shown in Fig. 5a, where we have colored each atom according
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to their energy contribution. We find that the validity of the rod length, edge, and cutoff

assumptions all depend on dx. For dx = 0.7σ, where the end atom of the rod overlaps

with one of the nanocube atoms, the rod-NP energy is described almost entirely by the

interaction energy of the two overlapping atoms. Therefore, for rods that overlap with

the particle (dx . 1σ), the fixed rod length assumption induces negligible errors, as the

contribution from the non-overlapping atoms that we fictitiously add or remove to keep the

rod length fixed should be negligible compared to the contributions from the closest set of

atoms. Since the rod-NP energy depends completely on the overlapping nanocube atom that

has the same lateral position as the rod, the error resulting from the edge assumption should

also be negligible, as the interaction energy of a rod facing the center of a nanocube should

be equivalent to that of a rod at or near the edge. The cutoff assumption is also valid as

only those rods within the y-z boundaries of the nanocube will be able to overlap with it.

As dx becomes larger, the number of atoms contributing significant interaction energies

increases. The data in Fig. 5a indicates that these atoms can be enclosed by a sphere centered

around the rod atom closest to the nanocube. As this sphere gets larger with increasing dx,

the assumptions become worse. For example, at dx = 1.5σ and 3σ, the energies contributed

by nanocube atoms in the immediate vicinity of the central atom facing the rod also become

significant. In this case, if the rod was facing the edges of the nanocube, our model would

overestimate the rod’s energy by an amount equal to the energy contributed by some of

these vicinity atoms that the model assumes to exist. However, we find that the energy is

still dominated by the energy of the single atom closest to the cube, and, therefore, the rod

length, edge, and cutoff assumptions still remain quite valid. When dx increases further to

10σ, almost the entire interacting face of the nanocube makes significant contribution to the

energy of the system. Thus, if distant rods facing the edges of the nanocube are made to

interact at the nanocube center based on the edge approximation, we would overestimate

the total energy by adding contributions from many nanocube atoms that do not actually

exist. Furthermore, the rod atoms make significant energy contributions up to the fourth
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Figure 5: Analysis of model’s rod length, edge, and cutoff assumptions for 15σ nanocubes.
(a,b) vdW energies contributed by individual atoms to the overall interaction energy of: an
atomistic rod facing the center of mass of an atomistic cube (a), and two coplanar atomistic
cubes with dy = 0.267D, dz = D, φ = 45◦, and θ = ψ = 0◦ (b). In both cases, the z = 0
cross-section is shown and the coloring scheme is based on the magnitude of each atom’s
energy compared to that exhibiting the largest energy in each particle. Red dashed circles
highlight atoms with significant energy contributions. (c) Energy contribution by each layer
of atoms along the y direction plotted as percentage of total energy (red), and percentage
error in the energy of each layer calculated by assuming they are made of rods of fixed length
D (blue). (d) vdW interaction energy of atomistic rods as a function of their position along
the y-axis for rods held at three distinct separation distances.

layer. Therefore, for highly slanted cubes or triangular prisms that are one-atom thick in the

x-axis at the tips, the rod-length assumption would lead to excess energy from the fictitious

layers of added rod atoms. Finally, as the volume of sphere of influential atoms increases, the

cutoff assumption also becomes worse, as rods above or below the nanocubes top or bottom

edges, currently neglected in our model, start to make more significant contributions.

To assess the impact of the rod-length, edge, and cutoff assumptions at the level of inter-

particle interactions, we analyzed the interatomic LJ interactions between two 15σ nanocubes

in a tilted coplanar configuration at varying separation distances ds, as depicted in Fig. 5b.
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We chose this configuration in which NPs interact mostly via their edges, as it invokes some

of the largest errors from these assumptions. As observed in the rod-cube system, the num-

ber of atoms contributing significant energies expanded with increasing ds. For example,

while the total energy of the system could be almost entirely described by the interaction

energy of the overlapping atoms at ds = 0.7σ, the total energy for ds = 10σ required consid-

eration of a larger number of atoms from both NPs. This means that our rod-cube model

for this well-separated configuration would treat particle P1 as if it had many more atoms

that fill up the red dotted circle drawn in the figure. However, it is important to note that

the majority of the total energy is still contributed by atoms around the closest vertex of

P2 and P1 atoms facing this vertex. Though the model is expected to yield large errors for

rods corresponding to the upper and lower edges of P2 which are actually only one atom

long in the x-axis and have large dx, the contribution of these atoms to the overall energy

is negligible. Since the model calculates the contribution from the atoms around the closest

vertex accurately, the net error in vdW energy, even for this highly slanted nanocube P2

interacting near the edge of P1, remains small.

To gain a more quantitative understanding of the error introduced by the rod length

assumption, we compared in Fig. 5c the energies contributed by each layer of atoms in P2,

from top to bottom. In the figure, layer 1 corresponds to the single atom on the top edge of

the cube, layer 2 represents the next layer of atoms immediately below that edge, and so on,

with layer 15 signifying the layer of atoms containing the P1-proximal vertex. The blue curve

represents the percentage error |(U ′layer − Ulayer)/Ulayer| in the energy of each layer measured

as the deviation of its energy U
′

layer calculated using full-length rods of atoms (of length D

as assumed in our model) from the true energy Ulayer calculated using the actual atomic

positions in each layer, and the red curve represents the percentage energy contribution of

each layer as given by Ulayer/
∑
Ulayer. The results show that the error is indeed very large

for the topmost layers (> 100% for layer 1) and dips to small values for layers involving

or adjacent to the closest vertex (≈ 10% for layer 15). However, the energies contributed
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by the topmost layers are only a tiny fraction of the total energy (0.016% for layer 1), as

most of the energy is contributed by layer 15 (≈ 51%) and its adjacent layers. This explains

why the cumulative error in total energy remains quite small, at only 14.4%, even though

the percentage errors in energy are quite large for layers close to the edges of the nanocube.

These results demonstrate that the rod length assumption has a small negative impact on the

total energy of particles, as the portions of P2 that most violate this assumption are almost

always the farthest from P1 (e.g., at the tips of particles in highly slanted configurations

where the rod lengths deviate the most from the assumed length D) and hence contribute

the least to the total energy.

To quantify the errors arising from the edge and cutoff assumptions, we examined how the

rod-nanocube interaction energy varies as a function of the rod’s lateral position. Figure 5d

plots the LJ interaction energy between the 15σ nanocube and a same-length rod as a

function of its normalized lateral coordinate dy/D, where dy/D = 0.5 and 1 correspond to a

rod facing the nanocube’s center and upper edge, and dy/D > 1 indicates a rod going beyond

the upper edge; we held the other lateral coordinate fixed at dz = D/2 and compared the

energy variation at three different fixed values of the separation distance dx. For a rod with

dx = 0.7σ that overlaps with the nanocube, the energy remains unchanged from the center to

the edge of the nanocube and becomes negligible immediately after the rod crosses the edge.

The edge and cutoff assumptions are thus valid for small separation distances, and should

lead to negligible errors for NP configurations at small separation distances. At larger dx,

the energies start to deviate as dy/D exceeds 0.8 and becomes ≈ 70% of the energy of the

centrally-located rod once the rod gets to the edge of the nanocube. Beyond the edge, the

energy quickly reduces to ≈ 15% of the energy of the central rods. This means that the edge

assumption may overestimate the vdW energy of a rod at the edge by 30%, and the cutoff

assumption may underestimate its energy slightly below the edges by 15%. The net impact

of the two kinds of errors on interparticle energy will obviously be much smaller because

the errors partly cancel out due to their opposite sign, they diminish with rod distance from
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edges, and the percentage contribution of energy from rods close to edges to the net energy is

typically small. Thus, similar to the rod length assumption, the edge and cutoff assumptions

also lead to small errors in the total energy.

Power-law approximation. Another source of error stems from our assumption that the

rod potential Urod(dx) can be approximated by simple power-law functions with constant

parameters (Table 2). For instance, the repulsive portion Urep of this potential for 50σ

nanocubes was described using a single power law with scaling exponent nrep = 10.66 and

its attractive portion Uatt was described using two power law with exponents natt = 3.43

when dx ≤ 2σ and natt = 2.72 when dx > 2σ. However, explicit determination of distance

scalings from an atomistically-computed rod potential for this nanocube revealed that both

nrep and natt are continuously varying functions of dx (Fig. 6a). This is expected as the

distance-scaling of the interaction between macroscopic bodies depends on the comparative

length scales of the particles and their separation distances. In fact, in the limit dx >> D,

the internal differences in the positions of atoms within the rod and the NP become miniscule

compared to dx, and nrep and natt should approach values of 12 and 6, the distance scalings

of interatomic LJ interactions.

The above analysis shows that distance-dependent scaling exponents might be required to

accurately model Urep and Uatt across all dx, though this would make the model analytically

intractable. Thus, our strategy of modeling these potentials using one or two power-laws with

constant exponents to permit analytical solution is approximate. Given that Urep needs to be

modeled accurately only over small distances (dx ≤ 2σ) due to the short-ranged nature of this

potential and that its true exponent shows only a small variation in this distance range, the

power-law approximation turns out to be very accurate for Urep (see Fig. 1i). The power-law

used for modeling Uatt at short distances is similarly a good approximation as this power-law

also is required to operate over a short range of distances (1σ ≤ dx < 2σ). However, the

power-law used for modeling the long-range behavior of Uatt needs to be accurate over broader

range of distances (dx > 2σ). Clearly, this power-law is neither expected nor required to
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Figure 6: Analysis of model’s power-law approximation for 50σ nanocubes. (a) Scaling
exponents natt and nrep of the attractive and repulsive portions of the rod potential as
function of distance dx. Solid lines represent fitted exponents and their assumed range of
validity, while dashed lines represent true exponents obtained from atomistic rod-nanocube
interactions. (b) Separation distance ds at which the interparticle vdW energies have decayed
to ≤ 3ε plotted as a function of particle size D for nanocubes in face-face configurations. (c)
Rod potential calculated atomistically (symbols) and compared against its power-law model
over a distance range of dx ≤ D (solid line).

accurately model interactions at large distances where the fitted exponent departs strongly

from the true exponent and the interaction energies become very small. We therefore set the

range of validity of this power law as the distance range over which the particles still interact

with significant energies that we want our model to accurately predict; in this study, we set

this energy threshold to be equal to 3ε, which is O(kBT ).

To determine roughly the distance range for which the total interparticle energy |UvdW| >

3ε, we calculated via atomistic summation the interaction energies of face-face nanocubes

for a range of cube sizes D. We chose this configuration, as it yields the largest energies

for a given ds. Interestingly, the energies decayed to 3ε at ds ≈ 0.38D, a distance range

proportional to particle size (Fig. 6b). For nanocubes with φ > 0◦ or dy < D, the relevant ds

would be even smaller. Therefore, our model is only required to be accurate for ds ≤ 0.38D.

As demonstrated in our results in Fig. 3, our model using only the two sets of power laws

described above could accurately predict vdW interaction energies within this distance range.

In fact, the single power-law used for describing the long-range portion of Uatt in our model

could accurately describe Urod at distances as large as ds = 1D (Fig. 6c). Therefore, we can
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assume that our current model with two sets of parameters can predict the vdW interactions

between faceted NPs over a significant range of separation distances. Additional power-laws

could potentially be included in the model if greater accuracy is required for predicting small

interparticle energies at larger ds.

Computational Implementation. To make the model more accessible to researchers

and demonstrate its applicability, we developed an open-source MATLAB application with

a graphical user interface (GUI) that implements the model for arbitrary nanocube sizes

and configurations. The user interface is shown in Fig. 7. In this application, the user

can input the configuration (ds, dy, dz, φ, θ, ψ) and material properties (σ, ε, D) of the

nanocubes. In addition to utilizing the user-provided values of ε, the application can also infer

ε from the Hamaker constant, atomic diameter, and number density of atoms constituting

the material (see Supporting Information and Fig. S7 for examples of application of the

model to specific materials). From these input parameters, the application calculates and

outputs the following: the power-law scaling coefficients and exponents that best describe

the short- and long-range portions of the rod potential; the y-z projection of the interacting

regions of the facets used for calculating total energy; and the vdW energies as a function of

particle separation distance ds, including the value at the inputted distance. The potential

energy obtained from the analytical model can also be compared with energy computed

from atomistic calculations. Detailed description of the computational implementation of

our model is provided in Supporting Information, and the application and its source codes

are available on GitHub.56

DISCUSSION

In this study, we developed an accurate analytical model for calculating vdW interaction

energies between faceted NPs. This work is motivated by the high computational costs

of calculating vdW energies through atomistic summation of interatomic potentials and
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Figure 7: Graphical user interface of the MATLAB application.

the inability of coarser-grained models of particles to capture various features of the vdW

energy landscape (comparison between UvdW obtained from atomistic models and coarse-

grained models is provided in Fig. S5). Our model was derived by discretizing the volume of

one of the interacting particles into rod-shaped volume elements and casting the interparticle

vdW energy of interaction as an area integral over rod-particle interactions. Through several

approximations and atomistic calculations, we were able to derive and parameterize power-

law functions for the rod-particle potential. Segmentation of the vdW energy area integral

into sub-integrals with constant or linearly-varying integration limits then allowed us to

derive closed-form solutions for the vdW energy. We found that the resulting analytical

expressions were able to quantitatively capture the distance- and orientation-dependent vdW

interactions for a range of faceted NPs, including cubes, square rods, triangular prisms,

and square pyramids. Extensive analysis of errors resulting from approximations of the

model revealed that the percentage errors in calculated energies were minimal for most

particle configurations and that the small fraction of configurations that exhibited larger

errors represented weakly interacting particles that have a much lower bar for accuracy.

The obvious benefit of this model over atomistic summation is its computational effi-
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ciency. The cost of atomistic energy calculations rises sharply with the particle size, and,

for the nanocubes studied here, the CPU time rises as ≈ 2.6 × 10−7D6 seconds per en-

ergy evaluation on an Intel Core i7-7700 processor (Fig. S6). In contrast, our model takes

only ≈ 7 × 10−4 seconds of CPU time per evaluation independent of the particle size. For

100σ nanocubes, this translates to more than 8 orders of magnitude reduction in computa-

tional costs. The model’s efficiency would be especially valuable in simulations that require

repeated calculation of interparticle energies. Consider, for instance, a Monte Carlo simula-

tion of commonly studied 40 nm (∼ 100σ) silver nanocubes47 with a typical system size of

N = 100 particles and simulation length of 107 steps. Assuming O(N) energy evaluations

per step, the simulation would require ∼ 200 hours as opposed to ∼ 106 years of CPU time

if the simulation used our model instead of atomistic summation for calculating energies.

The development of an analytical model for vdW interactions that is both accurate and

efficient should enable many problems involving faceted NPs to be studied by simulations

that would otherwise have had to resort to inaccurate treatment of vdW interactions via

coarse-grained models. The vast literature on spherical NPs has shown that the strength

and range of attractive forces between particles, including those arising from vdW interac-

tions, significantly impact the rheology, phase behavior, and microstructure of fluid-particle

systems. For example, the strength of vdW interactions between particles has been shown to

strongly impact their jamming transition41 and the type of anisotropic phase that they form

when grafted with polymers.57,58 Simulation studies of faceted NPs using purely-repulsive

potentials have demonstrated that the particles organize into novel arrangements under com-

pression as a result of the anisotropy in their excluded volume.33,34 One can expect that the

introduction of attractive forces between such NPs would cause them to self-assemble (as

opposed to pack) into new and complex equilibrium and nonequilibrium (trapped) structural

phases. Thus, the ability to accurately and efficiently model vdW forces between faceted

NPs would enable researchers to explore their phase behavior and rheology. Such studies

have the potential to reveal previously unseen phases and phenomena that may be of interest
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to basic science or engineering applications.

Several extensions of the model that may enhance its applicability but have not been

investigated in the current study could become topics of future investigation. First, while we

showed that the model provides excellent energy predictions for simple faceted geometries

like cuboids, pyramids, and prisms, the range of particle shapes for which the model remains

accurate needs to be further investigated. An inherent assumption of our model is that the

interactions between two particles is dominated by a single interacting facet of one of the

particles (P1’s face normal to the x-axis), which holds true for all shapes whose adjoining

facets subtend an angle equal to or smaller than 90◦. However, this assumption becomes

invalid for shapes exhibiting larger angles, or in other words, shapes with more facets than

cubes. For these shapes, other P1 facets also exhibit overlap with P2 facets in their y-z

projections and their interactions must be accounted for as well. Thus, the model is expected

to lose accuracy with increasing number of facets (beyond cubes) to the point of becoming

invalid for spheres that effectively possess an infinite number of facets. Thus, additional

work is required to determine particle shapes for which the model remains accurate and to

revise the model to improve its accuracy for other faceted geometries.

Second, we did not investigate in this study the model’s accuracy for particles larger

than D = 100σ (∼40 nm). Based on our earlier analysis of the rod potential, the power-law

describing its long-range attraction is required to be valid to a distance of 0.38D (at which

point the interparticle interactions are deemed to be insignificant). Thus, the larger the

particle, the larger the range over which the power-law is required to be accurate. This

means that for large NPs, of sizes 100 nm to several microns, a single power-law may not

be sufficient to accurately model the rod potential over this entire range. Future studies

would thus benefit from exploring the accuracy of the current version of the model to larger

particles and investigating the ability of employing additional power-laws to improve model

accuracy for large NPs.

Lastly, the model currently only calculates vdW energies between particles and not forces
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or torques, which requires additional and more complex considerations of energy gradients

and interaction site positions. Therefore, the model in its current form can only be used

in “static” simulations such as Monte Carlo and energy-minimization methods, and not in

“dynamic” simulations such as molecular dynamics or Brownian dynamics methods. While

static simulations can be used to investigate many particle-related phenomena such as self-

assembly and phase behavior, expansion of the model to dynamic simulations would enable

other particle-related topics such as assembly dynamics, rheology, and nonequilibrium effects

to be studied.

CONCLUSIONS

We developed an analytical model for calculating the vdW interaction potential between

faceted NPs. The model is able to accurately predict the vdW energy landscape across all

relevant particle configurations for a range of NP shapes. A computational implementation

of this method demonstrated that the model can bring orders of magnitude improvement in

computational efficiency over the atomistic summation approach for calculating vdW ener-

gies. We expect that the model’s accuracy, efficiency, and ease of implementation will allow

researchers to rapidly explore vdW energy landscapes of faceted NPs, and, more importantly,

enable many future investigations of faceted NPs through simulations that have so far been

impeded by the prohibitive costs of accurately evaluating vdW energies.
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