Jump to main content
Jump to site search


Symmetrically recombined nanofibers in a high-selectivity membrane for cation separation in high temperature and organic solvent

Abstract

Development of polymeric cation exchange membranes (CEMs) with high themostability and resistance to organic solvents is an urgent challenge for materials chemistry and a major problem for industrial application. Herein, we report a novel CEM design, which symmetrically recombines poly(p-phenylene terephthalamide) nanofibers and 2,5-diaminobenzenesulfonic acid based on amide hydrolysis and amide condensation reaction for ion separation in high temperature and organic solvent aqueous applications. The resulting membrane (10 μm thickness) exhibited greater thermodynamic and electrochemical properties than the common commercial CEMs. Attributed to the membrane’s specific structure, size sieving, and electrostatic repulsion effects, the resulting membrane showed a more selective separation of monovalent cations in engineering applications. Moreover, it has demonstrated exceptional desalination at high temperature (as high as 100 ℃) and organic solvent aqueous environments (as high as 80% acetone solution), which had not been previously reported in engineering applications. The resulting membrane combines the benefits of nano-materials and a specific structure design allowing for electrodialysis in high temperature and organic solvent aqueous application environments.

Back to tab navigation

Supplementary files

Publication details

The article was received on 09 Jul 2019, accepted on 15 Aug 2019 and first published on 15 Aug 2019


Article type: Paper
DOI: 10.1039/C9TA07416C
J. Mater. Chem. A, 2019, Accepted Manuscript

  •   Request permissions

    Symmetrically recombined nanofibers in a high-selectivity membrane for cation separation in high temperature and organic solvent

    Y. Zhao, Y. Qiu, Z. Mai, E. Ortega, J. Shen, C. Gao and B. Van der Bruggen, J. Mater. Chem. A, 2019, Accepted Manuscript , DOI: 10.1039/C9TA07416C

Search articles by author

Spotlight

Advertisements