Jump to main content
Jump to site search
PLANNED MAINTENANCE Close the message box

Scheduled maintenance work on Wednesday 22nd May 2019 from 11:00 AM to 1:00 PM (GMT).

During this time our website performance may be temporarily affected. We apologise for any inconvenience this might cause and thank you for your patience.

A robust solid oxide electrolyzer for highly efficient electrochemical reforming of methane and steam


In this work, a robust solid oxide electrolysis cell with Sr2Fe1.5Mo0.5O6-δ-Ce0.8Sm0.2O1.9 (SFM-SDC) based electrodes has been utilized to verify the conceptual process of partial oxidation of methane (POM) assisted steam electrolysis, which can produce syngas and hydrogen simultaneously. When the cathode is fed with 74%H2-26%H2O and operated at 850 oC, the open circuit voltage (OCV), the minimum energy barrier required to overcome the oxygen partial gradient, is remarkably reduced from 0.940 to -0.012 V after shifting the feeding gas in the anode chamber from air to methane, indicating that the electrical consumption of steam electrolysis process could be significantly reduced and compensated by the use of low grade thermal energy from external heat sources. It is found that after ruthenium (Ru) impregnation, the electrolysis current density of the electrolyzer is effectively enhanced from -0.54 to -1.06 Acm-2 at 0.6 V and 850 oC, while the electrode polarization resistance at OCV condition and 850 oC is significantly decreased from 0.516 to 0.367 Ωcm2. Long-term durability testing demonstrates that no obvious degradation but a slight improvement is observed for the electrolyzer, which is possibly due to the activation of the SFM-SDC electrode during operation. These results indicate that the robust Ru infiltrated solid oxide electrolyzer is a very promising candidate for POM assisted steam electrolysis application. Our result will provide insight to improve the electrode catalysts used in POM assisted steam electrolysis.

Back to tab navigation

Supplementary files

Publication details

The article was received on 14 Jan 2019, accepted on 05 May 2019 and first published on 06 May 2019

Article type: Paper
DOI: 10.1039/C9TA00467J
J. Mater. Chem. A, 2019, Accepted Manuscript

  •   Request permissions

    A robust solid oxide electrolyzer for highly efficient electrochemical reforming of methane and steam

    T. Liu, H. Liu, X. Zhang, L. Lei, Y. Zhang, Z. Yuan, F. F. Chen and Y. Wang, J. Mater. Chem. A, 2019, Accepted Manuscript , DOI: 10.1039/C9TA00467J

Search articles by author