Issue 8, 2019

Chemically crosslinked liquid crystalline poly(ionic liquid)s/halloysite nanotubes nanocomposite ionogels with superior ionic conductivity, high anisotropic conductivity and a high modulus

Abstract

A novel type of chemically crosslinked liquid crystalline nanocomposite ionogel electrolyte based on poly(ionic liquid) (PIL) with superior ionic conductivity and high anisotropic conductivity was designed and synthesized using the in situ photopolymerization of sheared soft ionogels containing charged halloysite nanotubes (HNTs) and ionic liquid monomers. The oriented structure was investigated using scanning electron microscopy (SEM) and small-angle X-ray scattering (SAXS). The chemically crosslinked backbone of the PIL and the addition of HNTs endowed the flexible ionogels with a combined very high modulus (up to 26.7 MPa) and mechanical strength (up to 4.4 MPa). Crucially, the obtained ionogels exhibited high mechanical stability even at temperatures up to 200 °C. Remarkably, in terms of the conductivities, the resulting pre-sheared ionogels displayed superior room temperature ionic conductivity (up to 6 mS cm−1) and a very high conductivity anisotropy ratio (up to 1600), owing to the alignment of the HNTs with oppositely charged surfaces and the high ionic conductivity of the polyelectrolyte PILs. Furthermore, flexible solid-state supercapacitor devices based on the high ion-conductive nanocomposite ionogels were fabricated, which demonstrated high and temperature-dependent specific capacitance, and remarkable cycling stability and flexible performance.

Graphical abstract: Chemically crosslinked liquid crystalline poly(ionic liquid)s/halloysite nanotubes nanocomposite ionogels with superior ionic conductivity, high anisotropic conductivity and a high modulus

Supplementary files

Article information

Article type
Paper
Submitted
08 Nov 2018
Accepted
29 Jan 2019
First published
30 Jan 2019

Nanoscale, 2019,11, 3689-3700

Chemically crosslinked liquid crystalline poly(ionic liquid)s/halloysite nanotubes nanocomposite ionogels with superior ionic conductivity, high anisotropic conductivity and a high modulus

H. Li, Z. Feng, K. Zhao, Z. Wang, J. Liu, J. Liu and H. Song, Nanoscale, 2019, 11, 3689 DOI: 10.1039/C8NR09030K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements